The regulatory (R) subunits of the cAMP-dependent protein kinase (protein kinase A or PKA) are multi-domain proteins responsible for conferring cAMP-dependence and localizing PKA to specific subcellular locations. There are four isoforms of the R subunit in mammals that are similar in molecular mass and domain organization, but clearly serve different biological functions. Although high-resolution structures are available for the cAMP-binding domains and dimerization/docking domains of two isoforms, there are no high-resolution structures of any of the intact R subunit homodimer isoforms. The results of small-angle X-ray scattering studies presented here indicate that the RIalpha, RIIalpha, and RIIbeta homodimers differ markedly in overall shape, despite extensive sequence homology and similar molecular masses. The RIIalpha and RIIbeta homodimers have very extended, rod-like shapes, whereas the RIalpha homodimer likely has a compact Y-shape. Based on a comparison of the R subunit sequences, we predict that the linker regions are the likely cause of these large differences in shape among the isoforms. In addition, we show that cAMP binding does not cause large conformational changes in type Ialpha or IIalpha R subunit homodimers, suggesting that the activation of PKA by cAMP involves only local conformational changes in the R subunits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2004.02.028DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
type ialpha
8
ialpha iialpha
8
subunit homodimers
8
linker regions
8
high-resolution structures
8
riialpha riibeta
8
riibeta homodimers
8
conformational changes
8
subunit
5

Similar Publications

Autosomal dominant CDK13-related disease is characterized by congenital heart defects, dysmorphic facial features, and intellectual developmental disorder (CHDFIDD). Heterozygous pathogenic variants, particularly missense variants in the kinase domain, have previously been described as disease causing. Using the determination of a methylation pattern and comparison with an established episignature, we reveal the first hypomorphic variant in the kinase domain of CDK13, leading to a never before described autosomal recessive form of CHDFIDD in a boy with characteristic features.

View Article and Find Full Text PDF

Cyclin-dependent protein kinases and cell cycle regulation in biology and disease.

Signal Transduct Target Ther

January 2025

Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.

Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions.

View Article and Find Full Text PDF

Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.

View Article and Find Full Text PDF

Cell cycle dysregulation and the corresponding metabolic reprogramming play significant roles in tumor development and progression. CDK9, a kinase that regulates gene transcription and cell cycle, also induces oncogene transcription and abnormal cell cycle in AML cells. The function of CDK9 for gene regulation in AML cells requires further exploration.

View Article and Find Full Text PDF

Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.

Cell Commun Signal

January 2025

Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1 road, Guishan District, Taoyuan, Taiwan.

Background: The Golgi apparatus is widely considered a secretory center and a hub for different signaling pathways. Abnormalities in Golgi dynamics can perturb the tumor microenvironment and influence cell migration. Therefore, unraveling the regulatory network of the Golgi and searching for pharmacological targets would facilitate the development of novel anticancer therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!