Effects of resin composite composition and irradiation distance on the performance of curing lights.

Biomaterials

Department of Dental Clinical Sciences, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.

Published: August 2004

This study determined the effect of using five resin composites and two irradiation distances to test the performance of dental curing lights. Three types of curing lights with similar spectral distributions, but each delivering a different power density, were used for irradiation times ranging from 3 to 60 s. Power densities were measured at 2 and 9 mm from the tip of the light guide. Five composites 1.6 mm thick and of the same shade were irradiated at 2 and 9 mm from the light guide with energy densities of 1.2-38.0 J/cm(2). The Knoop hardness at the top and bottom of the composite specimens was measured 15 min after irradiation and again after immersion in water at 37 degrees C for 24 h. There was a linear relationship between the hardness and the logarithm of the energy density received by the composite (r2 > 0.81). The analysis of variance showed that the composite, the side tested, the distance from the light guide, and the curing light/irradiation time combination all had a significant effect on the hardness (p < 0.01). Plots of the hardness at the bottom 15 min after irradiation by each light were generated for all the composites. These plots illustrated that the effects of the different curing light/irradiation time combinations on hardness were not the same for each composite. The effects of each curing light/time combination on hardness were also different at 2 and 9 mm from the light guide. In conclusion, when comparing the effects of different light sources on resin polymerization, several different composites should be irradiated at clinically relevant distances from the light guide. Using high-powered curing lights for 3 or 5 s did not deliver sufficient energy to cure the 1.6-mm thick specimens of composites used in this study.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2003.11.032DOI Listing

Publication Analysis

Top Keywords

light guide
20
curing lights
16
min irradiation
8
curing light/irradiation
8
light/irradiation time
8
combination hardness
8
effects curing
8
curing
7
light
7
hardness
6

Similar Publications

Vertebrate vision in dim-light environments is initiated by rod photoreceptor cells that express the photopigment rhodopsin, a G-protein coupled receptor (GPCR). To ensure efficient light capture, rhodopsin is densely packed into hundreds of membrane discs that are tightly stacked within the rod-shaped outer segment compartment. Along with its role in eliciting the visual response, rhodopsin serves as both a building block necessary for proper outer segment formation as well as a trafficking guide for a few outer segment resident membrane proteins.

View Article and Find Full Text PDF

This article delves into the complex relationship between climate change, migration patterns, and health outcomes in Latin America and the Caribbean (LAC). While the severe impact of climate change on health in LAC is widely acknowledged, the article sheds light on the often-overlooked multiple effects on migration and the well-being of migrants. These impacts encompass poverty, food and water insecurity, and adverse physical and mental health outcomes.

View Article and Find Full Text PDF

Genetic profiling of Wilson disease reveals a potential recurrent pathogenic variant of ATP7B in the Jordanian population.

J Pediatr Gastroenterol Nutr

January 2025

Department of Pathology and Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan.

Objectives: Wilson disease (WD) is an autosomal-recessive disorder that disrupts copper homeostasis. ATPase copper transporting beta (ATP7B) gene is implicated as the disease-causing gene in WD. The common symptoms associated with WD include hepatic, neurological, psychiatric, and ophthalmic manifestations.

View Article and Find Full Text PDF

Background: Recent studies suggest a connection between immunoglobulin light chains (IgLCs) and coronary heart disease (CHD). However, current diagnostic methods using peripheral blood IgLCs levels or subtype ratios show limited accuracy for CHD, lacking comprehensive assessment and posing challenges in early detection and precise disease severity evaluation. We aim to develop and validate a Coronary Health Index (CHI) incorporating total IgLCs levels and their distribution.

View Article and Find Full Text PDF

Covalent labeling of RNA in living cells poses many challenges. Here we describe a structure-guided approach to engineer covalent RNA aptamer-ligand complexes. The key is to modify the cognate ligand with an electrophilic handle that allows it to react with a guanine at the RNA binding site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!