Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A comparison of the behavior of six different redox mediators for the electrocatalysis of the oxidation of NADH, which are widely used in the construction of dehydrogenase-based biosensors, is reported. The redox mediators were, potassium hexacyanoferrate (II), Meldola's Blue (MB), dichlorophenolindophenol (DCPIP), p-benzoquinone (p-BQ), o-phenylenediamine (o-PDA) and 3,4-dihydroxybenzaldehyde (3,4-DHB). After incorporating each of them in the sensor system following four different strategies (in solution, entrapped in epoxy-composites, adsorbed or electropolymerized on the electrode surface), several aspects regarding repeatability and reproducibility were considered and compared.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bios.2003.10.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!