A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First isolated active titanium peroxo complex: characterization and theoretical study. | LitMetric

The protonated titanium peroxo complex [Bu(4)N](4)[HPTi(O(2))W(11)O(39)] (1) has been first prepared via interaction of the micro-oxo dimeric heteropolytungstate [Bu(4)N](8)[(PTiW(11)O(39))(2)O] (3) with an excess of 30% aqueous H(2)O(2) in MeCN. Peroxo complex 1 has been characterized by using elemental analysis, UV-vis, IR, resonance Raman (RR), (31)P and (183)W NMR spectroscopy, cyclic voltammetry, and potentiometric titration. The electronic and vibrational spectra of 1 are very similar to those of the well-known unprotonated titanium peroxo complex [Bu(4)N](5)[PTi(O(2))W(11)O(39)] (2), while (31)P and (183)W NMR spectra differ significantly. A compilation of the physicochemical techniques supports a monomeric Keggin type structure of 1 bearing one peroxo ligand attached to Ti(IV) in a eta(2)-coordination mode. The protonation of the titanium peroxo complex results in an increase of the redox potential of the peroxo group, E(1/2) = 1.25 and 0.88 V relative to Ag/AgCl reference electrode for 1 and 2, respectively. In contrast to 2, 1 readily reacts with 2,3,6-trimethylphenol (TMP) at 40 degrees C in MeCN to give 2,2',3,3',5,5'-hexamethyl-4,4'-biphenol (BP) and 2,3,5-trimethyl-p-benzoquinone (TMBQ). The proportion between BP and TMBQ in the reaction products depends on the TMP/1 ratio. When a 2-fold excess of TMP is used, the main reaction product is BP (90%), while using a 2-fold excess of 1 leads to TMBQ (95%). On the basis of the product study, a homolytic oxidation mechanism that implicates the formation of phenoxyl radicals is suggested. The RR deuterium labeling experiments show that the activating proton is most likely localized at a Ti-O-W bridging oxygen rather than at the peroxo group. Theoretical calculations carried out at the DFT level on the protonated and unprotonated titanium peroxo derivatives also propose that the most stable complex is formed preferentially after protonation of the Ti-O-W site; however, both Ti-OH-W and TiOO-H protonated anions could coexist in solution.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0354466DOI Listing

Publication Analysis

Top Keywords

titanium peroxo
20
peroxo complex
20
peroxo
9
31p 183w
8
183w nmr
8
unprotonated titanium
8
peroxo group
8
2-fold excess
8
complex
6
titanium
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!