Two strains of lactobacilli (Lactobacillus acidophilus T-135 and Lactobacillus plantarum 4/97) were selected in order to study their inhibitory properties against frequent udder pathogens (Escherichia coli, Staphylococcus aureus, Streptococcus agalactiae, Streptococcus uberis, Salmonella enteritidis and Bacillus pumilus), their production of organic acids as well as their ability to survive on the teat skin, the teat duct mucosa and in a lipoid emulsion. Both strains inhibited the tested pathogenic microbes and survived on the investigated surfaces and in an emulsion for more than 6 hours and 11 days, respectively.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lactobacillus plantarum
8
lactobacillus acidophilus
8
testing lactobacillus
4
plantarum lactobacillus
4
acidophilus strains
4
strains suitability
4
suitability lipoid
4
lipoid probiotic
4
probiotic strains
4
strains lactobacilli
4

Similar Publications

L11 and LR: Ameliorate Obesity via AMPK Pathway.

Nutrients

December 2024

Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Objectives: The purpose of this study was to find the potential mechanism of two Lactobacillus ( L11 and LR) on ameliorating obesity, including lipid metabolism and gut microbiota. The two isolates have been studied to have good characterization in vitro, but in vivo studies in modulating lipid metabolism and gut microbiota were not studied.

Methods: In this study, mice with HFD supplemented with L11 or LR exhibited slower obesity progression, including reduced weight gain, abdominal fat accumulation, liver damage, inflammation, and adipose lesions.

View Article and Find Full Text PDF

Metagenomic Reveals the Role of Autochthonous in the Fermentation and Flavor Formation of Dry Sausage.

Foods

January 2025

Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, School of Life Sciences, Yantai University, Yantai 264005, China.

The effect of SH4, a typical aroma enhancer, on flavor formation of the dry fermented sausage was investigated using gas chromatography-mass spectrometry and metagenomic sequencing. The results showed that inoculation with SH4 promoted volatile compound formation from carbohydrate and amino acid metabolism and accelerated ester synthesis. The enzymes, genes, and microorganisms involved in the formation pathway of volatile compounds based on microbial metabolism were predicted and constructed into a metabolic pathway network.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of spp., particularly KR3, against the common foodborne pathogens , and spp.

View Article and Find Full Text PDF

The recent emergence of bile salt hydrolase (BSH) enzyme as a therapeutic target reflects its unbound potential in mitigating hypercholesterolemia, obesity, and gastrointestinal issues. However, to bolster its industrial application, optimization of BSH assay lays the cornerstone for enhancing sensitivity, specificity, and reproducibility. The current study delved into optimizing the BSH assay parameters utilizing response surface methodology (RSM) and one-factor-at-a-time (OFAT) method for two novel, natural BSH producers, Heyndrickxia coagulans ATCC 7050 and Lactiplantibacillus plantarum ATCC 10012.

View Article and Find Full Text PDF

Enhancing fermented vegetable flavor with Lactobacillus plantarum and Rhodotorula mucilaginosa.

Food Res Int

January 2025

Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory for Food Advanced Manufacturing, 650500 Kunming, China; International Green Food Processing Research and Development Center of Kunming City, Kunming 650500, China. Electronic address:

The formation of flavor in fermented vegetables is directly associated with the interactions among the resident microbial strains. This study explored the cooperative dynamics between Lactobacillus plantarum and Rhodotorula mucilaginosa in a simulated cabbage juice system. The obtained results indicated that the co-cultivation of these strains accelerated fermentation kinetics and enhanced lactic acid production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!