Three approaches based on continuous flow methodology are assessed for the purpose of extending the dynamic range of flame atomic absorption spectrometry. The determination of several elements in infant liquid and powdered milk and water samples is used to check the performances of the manifolds. Two of the systems are fully computer-controlled and permit a calibration graph to be obtained by using a single standard solution. The results confirm that continuous flow methodology is a reliable alternative to the time-consuming common dilution procedures based on glassware. Since the systems are versatile and permit a wide range of degrees of dilution to be obtained, they can be easily adapted for the automated or semi-automated analysis of other liquid samples which are too concentrated to be aspirated directly into the atomic absorption spectrometer.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s0021663550057DOI Listing

Publication Analysis

Top Keywords

atomic absorption
12
extending dynamic
8
dynamic range
8
range flame
8
flame atomic
8
absorption spectrometry
8
determination elements
8
continuous flow
8
flow methodology
8
spectrometry comparison
4

Similar Publications

In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.

View Article and Find Full Text PDF

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Adsorption structures and bonding states of cesium and barium adsorbed on various sites of vermiculite.

Sci Total Environ

January 2025

Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Isotope Science Center, The University of Tokyo, Bunkyo, Tokyo 113-0032, Japan. Electronic address:

The adsorption reaction on clay minerals is crucial for understanding the environmental behavior of various cations, including cesium (Cs). However, its details remain unclear because of multiple adsorption sites of the clay minerals, a significant difference between concentrations in the atomic-scale experiments and the actual environment, and difficulties of evaluating bonding states of the adsorbed cations. It is expected that systematic experiments at the atomic-scale with a wide concentration range and application of density functional theory (DFT) calculations overcome the problems and bring crucial insights to link laboratory experiment results with environmental sample analysis.

View Article and Find Full Text PDF

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Background: In this study, two chalcone analogs were synthesized through in silico and experimental methods, and their potential to inhibit the lipoxygenase enzyme, which plays a role in the inflammation pathway, was assessed. Specifically, this study is a continuation of previous research in which chalcone derivatives were synthesized and characterized.

Objectives/methods: In the current work, we present the re-synthesis of two chalcones, with a focus on their docking studies, NMR analysis, and dynamic simulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!