Optical emission spectroscopy in reactive hollow cathode arc discharge plasmas - Local distribution of active species during the deposition of hard carbon films.

Anal Bioanal Chem

Institut für Werkstoffe der Energietechnik, Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany.

Published: June 1996

A low pressure arc plasma discharge from a hollow LaB(6)-cathode with up to 100 A discharge current is used to create plasmas of high density. Typical values for the electron density and temperature in PETRA ( Plasma Engineering and Technology Research Assembly) are n(e)=10(12)-10(13) cm(-3) and T(e)=5-20 eV. The ionization ratio is typically 1-10%. Optical emission spectroscopy has been applied to investigate the processes within the plasma which lead to the deposition of thin carbon films. In these experiments hydrogenated carbon films (a-C:H) have been deposited on Si-substrates by introducing hydrocarbon gases (CH(4), C(2)H(2)) into He- and Ar-plasmas. Space resolved optical emission spectroscopy using an in-situ translation mechanism of the optical fibre has been performed to measure the local concentrations of CH-radicals, carbon ions and of the excitation of He-neutrals. In addition the hydrogen liberated by the dissociation of the hydrocarbon molecules has been measured. The dissociation of the hydrocarbon molecules takes place as a localized process in the vicinity of the reactive gas inlet.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s0021663550244DOI Listing

Publication Analysis

Top Keywords

optical emission
12
emission spectroscopy
12
carbon films
12
dissociation hydrocarbon
8
hydrocarbon molecules
8
optical
4
spectroscopy reactive
4
reactive hollow
4
hollow cathode
4
cathode arc
4

Similar Publications

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

A shikimic acid derived carbon dots (SACNDs-FITC) for multi-modal detection and removal of Hg: Probe design, sensing performance, and applications in food analysis.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, China.

The first shikimic acid derived fluorescent carbon dots (SACNDs-FITC) for multi-modal detection and simultaneous removal of Hg is revealed. The fluorescence of SACNDs-FITC centered at 520 nm can be selectively quenched by Hg, while the emission centered at 420 nm remains constant which can be used for self-calibration. Naked-eye distinguishable color change from yellow to colourless under daylight and from green to blue under UV light could be observed for SACNDs-FITC in the real-time detection of Hg.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).

View Article and Find Full Text PDF

Quantum dot-polymer composites have the advantages of high luminescent quantum yield (PLQY), narrow emission half-peak full width (FWHM), and tunable emission spectra, and have broad application prospects in display and lighting fields. Research on quantum dots embedded in polymer films and plates has made great progress in both synthesis technology and optical properties. However, due to the shortcomings of quantum dots, such as cadmium selenide (CdSe), indium phosphide (InP), lead halide perovskite (LHP), poor water, oxygen, and light stability, and incapacity for large-scale synthesis, their practical application is still restricted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!