An intracavity laser spectrometer equipped with a graphite furnace electrothermal atomizer and two alternative types of narrow atomic lines detection schemes (high resolution diffraction spectrograph with optical multichannel analyzer or a resonant detector based on a hollow-cathode lamp) is described. Such system was used to determine ultra-trace amounts of lithium and strontium in aqueous solutions. A significant reduction in the measurable absorbance was demonstrated for both elements. Careful optimization of the operating conditions of the detection systems and a comparison of their typical features and advantages were performed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s0021663550883DOI Listing

Publication Analysis

Top Keywords

intracavity laser
8
optimization detection
4
detection atomic
4
atomic absorption
4
absorption lines
4
lines intracavity
4
laser spectroscopy
4
spectroscopy intracavity
4
laser spectrometer
4
spectrometer equipped
4

Similar Publications

Tunable Multisoliton State Ultrafast Fiber Laser Based on NiSe and Generation of Vector Dual-Wavelength Solitons.

ACS Appl Mater Interfaces

January 2025

College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.

As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.

View Article and Find Full Text PDF

In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.

View Article and Find Full Text PDF

We demonstrated a dispersion-managed 2 µm ultrafast laser based on Tm:ZBLAN fiber. By controlling intracavity net dispersion using passive fibers, we observed soliton, stretched-pulse, and dissipative-soliton mode-locked operations. In particular, the broadest output spectrum with a bandwidth at 30 dB below the peak of 320 nm and a pulse duration of 61 fs were obtained at a net dispersion of -0.

View Article and Find Full Text PDF

A compact Nd:YVO/Cr:YAG passively Q-switched laser in a near-hemispherical resonator is exploited to realize high-peak-power pulsed beams with high spatial degrees of freedom. Beneficial from the advantages of strong intracavity beam focusing as well as the point-like excitation condition for the proposed cavity design, various high-order structured pulses as coherent superpositions of multiple degenerate eigenmodes are stably generated under different off-axis pump schemes. Besides, by employing external-cavity astigmatic mode conversion (AMC), the oval-shaped and chessboard-like structured pulses under on-axis and 1D off-axis pumping are transformed into exotic modes with polygonal and figure-eight-shaped envelopes to further enrich the spatial complexity of the generated fields.

View Article and Find Full Text PDF

This paper reports a 3.8 µm pulse burst self-optical parametric oscillator (SOPO) employing the Nd:MgO:PPLN crystal, achieving programmable mid-infrared pulse burst output based on step-active Q-switching technology. Building on the intracavity optical parametric oscillator (IOPO) theory, a theoretical model for the step-active Q-switched self-optical parametric oscillator is developed by introducing idler photon and step loss terms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!