Direct attenuation of plasminogen activator inhibitor type-1 expression in human adipose tissue by thiazolidinediones.

Thromb Haemost

Brigham and Women's Hospital, Harvard Medical School, Cardiovascular Medicine, Department of Medicine, Boston, Massachusetts 02115, USA.

Published: April 2004

AI Article Synopsis

  • Adipose tissue produces plasminogen activator inhibitor type-1 (PAI-1), which is linked to increased cardiovascular risk.
  • Thiazolidinediones, drugs that sensitize insulin, were found to significantly reduce PAI-1 expression in human preadipocytes and adipocytes, except for pioglitazone, which had no effect.
  • The reduction of PAI-1 was mediated through PPAR-gamma signaling and may help patients with insulin resistance lower their cardiovascular risk.

Article Abstract

Adipose tissue produces substantial amounts of plasminogen activator inhibitor type-1 (PAI-1), an established cardiovascular risk factor. This study evaluated PAI-1 expression in human adipose tissue in response to thiazolidinediones, insulin sensitising drugs activating peroxisome proliferator-activated receptor-gamma (PPAR-gamma). Troglitazone, rosiglitazone, and ciglitazone significantly reduced PAI-1 protein expression in human preadipocytes under basal conditions and after stimulation of the cells with TGF-beta. Pioglitazone had no effect. In human adipocytes all four thiazolidinediones significantly attenuated PAI-1 expression. Signalling appeared to be mediated via PPAR-gamma and effects reflected, at least in part, changes in transcription. Accordingly, patients with insulin resistance may benefit from treatment with thiazolidinediones with respect to diminution of PAI-1 expression in adipose tissue and consequent potential reduction of cardiovascular risk.

Download full-text PDF

Source
http://dx.doi.org/10.1160/TH03-06-0384DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
expression human
12
pai-1 expression
12
plasminogen activator
8
activator inhibitor
8
inhibitor type-1
8
human adipose
8
cardiovascular risk
8
expression
5
pai-1
5

Similar Publications

PURPOSE OF REVIEW: Narrative review of the author's main contributions to the field of cardiovascular health spanning four decades, with a focus on findings related to 1- the pathophysiology of obesity, insulin resistance, type 2 diabetes and cardiovascular disease, and 2- the management/prevention of these conditions. Particular attention is given to the importance of regular physical activity. RECENT FINDINGS: Because behaviors and their physiological consequences are still not measured in clinical practice, it is proposed to systematically assess and target "lifestyle vital signs" (waist circumference, cardiorespiratory fitness, food-based diet quality and level of leisure-time physical activity) in primary care.

View Article and Find Full Text PDF

Bone Marrow Adipocytes as Novel Regulators of Metabolic Homeostasis: Clinical Consequences of Bone Marrow Adiposity.

Curr Obes Rep

January 2025

Maine Medical Center Research Institute, Maine Medical Center, 81 Research Drive, Scarborough, ME, 04074, USA.

Purpose Of Review: Bone marrow adipose tissue is a distinctive fat depot located within the skeleton, with the potential to influence both local and systemic metabolic processes. Although significant strides have been made in understanding bone marrow adipose tissue over the past decade, many questions remain regarding their precise lineage and functional roles.

Recent Findings: Recent studies have highlighted bone marrow adipose tissue's involvement in continuous cross-talk with other organs and systems, exerting both endocrine and paracrine functions that play a crucial role in metabolic homeostasis, skeletal remodeling, hematopoiesis, and the progression of bone metastases.

View Article and Find Full Text PDF

Background: We aimed to evaluate how the parameters used in the diagnosis of metabolic syndrome (MetS) and parameters such as epicardial adipose tissue (EAT) thickness, insulin resistance (IR), and serum uric acid (SUA) are affected according to the severity of obesity.

Methods: A total of 120 obese patients aged 10-18 years were classified as class 1-2-3 according to their body mass index (BMI) score. SUA was measured and oral glucose tolerance tests were performed on all patients.

View Article and Find Full Text PDF

Metabolic syndrome-related diseases frequently involve disturbances in skeletal muscle lipid metabolism. The accumulation of lipid metabolites, lipid-induced mitochondrial stress in skeletal muscle cells, as well as the inflammation of adjacent adipose tissue, are associated with the development of insulin resistance and metabolic dysfunction. Consequently, when antidiabetic medications are used to treat various chronic conditions related to hyperglycaemia, the impact on skeletal muscle lipid metabolism should not be overlooked.

View Article and Find Full Text PDF

The hypothalamus integrates peripheral signals and modulates food intake and energy expenditure by regulating the metabolic function of peripheral tissues, including the liver and adipose tissue. In a previous study, we demonstrated that s-resistin, an intracellular resistin isoform highly expressed in the hypothalamus and upregulated during aging, is important in the central control of energy homeostasis, affecting mainly the peripheral response to insulin by still unknown mechanisms. Herein, using an intracerebroventricular injection of a specific lentiviral RNAi against s-resistin, we assessed, in the Wistar rat, the effects of central s-resistin downregulation on the expression and phosphorylation levels of intermediates involved in insulin signaling and the inflammatory response in epididymal white adipose tissue (eWAT) and liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!