Choline is a nutrient in milk that is essential for the nourishment and growth of newborns. In rat milk, choline is present in concentrations that are more than an order of magnitude higher than in maternal serum. Using cultured mammary tissues taken from 12-14-day pregnant mice, the effects of the three primary lactogenic hormones--prolactin (PRL), insulin (I), and cortisol (H)--on choline uptake and incorporation into lipids were determined. By itself or in the presence of H and/or PRL, I was the only hormone that increased the accumulation of choline in aqueous tissue fractions. In contrast, PRL, when present with I plus H, was the only hormone that stimulated the incorporation of choline into the lipid fraction of tissues. Choline uptake was found to be sodium and time dependent; maximum distribution ratios >18 were achieved after a 6-hr uptake time. In kinetic studies the apparent Km for choline uptake was calculated to be approximately 2.7 mM, whereas the Vmax was 7.4 mM intracellular water per 30 mins. These results suggest the existence of a sodium-dependent active transporter for choline in the mouse mammary gland that is specifically stimulated by I. PRL, in contrast, only stimulates the incorporation of choline into lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/153537020422900406 | DOI Listing |
J Nutr
December 2024
Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Pregnancies complicated by maternal obesity are characterized by metabolic differences affecting placental nutrient transport and fetal development. Docosahexaenoic acid (DHA) is critical for fetal brain development and is primarily incorporated into phosphatidylcholine (PC). Recent evidence suggests choline may enhance PC-DHA synthesis; however, data on the impact of maternal plasma choline on placental phospholipid DHA content in females with obesity are limited.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, School of Chemistry, Northeast Normal University, Changchun 130024, China.
Liposomes have attracted attention in biomedicine and pharmacy for their benefits including reduced toxicity, extended pharmacokinetics, and biocompatibility. However, their limitations include susceptibility to blood clearance, rapid disintegration, and lack of functionality, restricting their further applications. To address these challenges, inspired by the unique topological features of cyclic polymers and the specific binding property of the choline phosphate (CP) lipid, dipole-dipole interactions between CP molecules are utilized to create a detachable cyclic PEG-embedded CP liposome (d-cycPEG-lipo).
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Europa Plaza 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain. Electronic address:
With the urge to reduce the use of petroleum-based materials, the aim of this work is to valorize biowaste to develop smart films through a sustainable fabrication way. In this regard, choline chloride/urea (1:2) deep eutectic solvent (DES) at different concentrations (25, 40, 50 and 75 wt%) was used to dissolve cow horn, used as reinforcement agent in soy protein films. The film fabrication was carried out by compression molding, a fast and cost-effective.
View Article and Find Full Text PDFActa Pharm Sin B
November 2024
University of Arizona, Tucson, AZ 85721, USA.
Hepatocyte hopping is the hepatocyte-to-sinusoid-to-hepatocyte shuttling that increases the efficiency of hepatic elimination of xenobiotics. This phenomenon is mediated efflux of hepatic metabolites by Mrp3 and reuptake by Oatp transporters in sequential hepatocytes until eventual biliary efflux by Mrp2. Sorafenib-glucuronide (SFB-G), the major metabolite of sorafenib (SFB), undergoes hepatocyte hopping, leading to efficient biliary elimination.
View Article and Find Full Text PDFStructure
November 2024
Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
In cholinergic neurons, choline is the precursor of the excitatory neurotransmitter acetylcholine (ACh), which plays a fundamental role in the brain. The high-affinity choline transporter, CHT1, mediates the efficient recycling of choline to facilitate ACh synthesis in the presynapse. Here, we report high-resolution cryoelectron microscopic (cryo-EM) structures of CHT1 in complex with the inhibitors HC-3 and ML352, the substrate choline, and a substrate-free state.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!