Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In lampreys, reticulospinal neurons integrate sensory inputs to adapt their control onto the spinal locomotor networks. Whether and how sensory inputs to reticulospinal neurons are modulated remains to be determined. We showed recently that cholinergic inputs onto reticulospinal neurons play a key role in the initiation of locomotion elicited by stimulation of the mesencephalic locomotor region in semi intact lampreys. Here, we examined the possible role of muscarinic acetylcholine receptors in modulating trigeminal inputs to reticulospinal neurons. A local application of muscarinic agonists onto an intracellularly recorded reticulospinal cell depressed the disynaptic responses to trigeminal stimulation. A depression was also observed when muscarinic agonists were pressure ejected over the brain stem region containing second-order neurons relaying trigeminal inputs to reticulospinal neurons. Conversely, muscarinic antagonists increased the trigeminal-evoked responses, suggesting that a muscarinic depression of sensory inputs to RS neurons is exerted tonically. The muscarinic modulation affected predominantly the N-methyl-d-aspartate (NMDA) component of the trigeminal-evoked responses. Moreover, atropine perfusion facilitated the occurrence of sustained depolarizations induced by stimulation of the trigeminal nerve, and it revealed NMDA-induced intrinsic oscillations in reticulospinal neurons. The functional significance of a muscarinic modulation of a sensory transmission to reticulospinal neurons is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.01025.2003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!