Our studies demonstrate that the ABC transporter and marker of stem and progenitor cells known as the breast cancer resistance protein (BCRP or ABCG2) confers a strong survival advantage under hypoxic conditions. We show that, under hypoxia, progenitor cells from Bcrp(-)/(-)mice have a reduced ability to form colonies as compared with progenitor cells from Bcrp(+/+) mice. Blocking BCRP function in Bcrp(+/+) progenitor cells markedly reduces survival under hypoxic conditions. However, blocking heme biosynthesis reverses the hypoxic susceptibility of Bcrp(-/-) progenitor cells, a finding that indicates that heme molecules (i.e. porphyrins) are detrimental to Bcrp(-/-) cells under hypoxia. BCRP specifically binds heme, and cells lacking BCRP accumulate porphyrins. Finally, Bcrp expression is up-regulated by hypoxia, and we demonstrate that this up-regulation involves the hypoxia-inducible transcription factor complex HIF-1. Collectively, our findings suggest that cells can, upon hypoxic demand, use BCRP to reduce heme or porphyrin accumulation, which can be detrimental to cells. Our findings have implications for the survival of stem cells and tumor cells in hypoxic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M313599200DOI Listing

Publication Analysis

Top Keywords

progenitor cells
20
cells
11
hypoxic conditions
8
cells hypoxic
8
hypoxic
6
bcrp
6
heme
5
progenitor
5
stem cell
4
cell marker
4

Similar Publications

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

∆-Tetrahydrocannabinol Increases Growth Factor Release by Cultured Adipose Stem Cells and Adipose Tissue in vivo.

Tissue Eng Regen Med

January 2025

Department of Plastic Surgery, Hand Surgery-Burn Center, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074, Aachen, Germany.

Background: Because of its biocompatibility and its soft and dynamic nature, the grafting of adipose tissue is regarded an ideal technique for soft-tissue repair. The adipose stem cells (ASCs) contribute significantly to the regenerative potential of adipose tissue, because they can differentiate into adipocytes and release growth factors for tissue repair and neovascularization to facilitate tissue survival. The present study tested the effect of administering a chronic low dose of ∆-tetrahydrocannabinol (THC) on these regenerative properties, in vitro and in vivo.

View Article and Find Full Text PDF

IL-7 secreted by keratinocytes induces melanogenesis via c-kit/MAPK signaling pathway in Melan-a melanocytes.

Arch Dermatol Res

January 2025

Department of Genetics & Biotechnology, Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Youngin, 17104, Republic of Korea.

Abnormal melanin synthesis within melanocytes can result in pigmentary skin disorders. Although pigmentation alterations associated with inflammation are frequently observed, the precise reason for this clinical observation is still unknown. More specifically, although many cytokines are known to be critical for inflammatory skin processes, it is unclear how they affect epidermal melanocyte function.

View Article and Find Full Text PDF

This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!