The goal of this study was to determine the effect of angiotensin type 1 (AT(1)) receptor antagonism on vasodilator responses in isolated skeletal muscle resistance arteries. Normotensive Sprague-Dawley rats were fed normal rat chow with the AT(1) receptor antagonist losartan (1mg/ml) in the drinking water for 7 days and compared with untreated control rats. Changes in the diameter of isolated resistance arteries supplying the gracilis muscle were assessed with a video micrometer. Arteriolar responses to acetylcholine, iloprost, and sodium nitroprusside were unaffected by losartan administration, whereas dilation to reduced Po(2) was converted into a constriction. Hypoxia-induced constriction of vessels from losartan-treated rats was inhibited by endothelium removal or indomethacin (1 microM). Blockade of the PGH(2)-thromboxane A(2) receptor with SQ-29548 (10 microM), thromboxane synthase inhibition with dazoxiben (10 microM), or the addition of the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL, 100 microM) converted hypoxic vasoconstriction to a dilation that was blocked by inhibiting nitric oxide synthase with N(omega)-nitro-l-arginine methyl ester (100 microM). These data suggest that AT(1) receptor activation has an important role in maintaining the vascular release of prostaglandins responsible for mediating hypoxic dilation in skeletal muscle microvessels.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.01098.2003DOI Listing

Publication Analysis

Top Keywords

at1 receptor
16
skeletal muscle
12
resistance arteries
12
muscle resistance
8
100 microm
8
receptor
5
microm
5
chronic at1
4
receptor blockade
4
blockade alters
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!