Distribution and composition of the lysis cassette of Lactococcus lactis phages and functional analysis of bacteriophage ul36 holin.

FEMS Microbiol Lett

Département de Biochimie et de Microbiologie, Faculté des Sciences et de Génie, Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Que., Canada G1K 7P4.

Published: April 2004

The bacteriophage lysis cassette, which comprises a lysin and a holin gene, was analyzed in 18 Lactococcus lactis phages. A muramidase motif was found in the lysins of c2-like phages, while an amidase motif was observed in the lysins of 936-like phages. Both amidase and muramidase types were detected among the P335 phages. The P335 lysins were separated into three groups based on amino acid sequence identity. A class I holin was recognized in 936-like and c2-like phages, whereas P335-like phages possess class II holins. The P335 holins were further divided into four groups based on sequence identity. Only the holins of 936-like phages contained putative dual-start motifs. The unusual lysis cassette of the highly virulent P335-like phage ul36 contains a unique holin (orf74B) upstream of a lysin which is present in several other P335-like phages. Using the lambdadelta Sthf system, we demonstrated that gpORF74B induces cell lysis at the same time as lambdadelta Sthf::S105, the effector of lambda lysis. Transcriptional analysis of ul36 lysis cassette showed that first transcripts are detected 35 min after infection of L. lactis cells. The lysis clock of phage ul36 appears to be controlled by the late expression of the holin and lysin genes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.femsle.2004.01.038DOI Listing

Publication Analysis

Top Keywords

lysis cassette
16
phages
9
lactococcus lactis
8
lactis phages
8
c2-like phages
8
phages amidase
8
936-like phages
8
groups based
8
sequence identity
8
p335-like phages
8

Similar Publications

Mycobacteriophages are viruses that specifically infect bacteria of the Mycobacterium genus. A substantial collection of mycobacteriophages has been isolated and characterized, offering valuable insights into their diversity and evolution. This collection also holds significant potential for therapeutic applications, particularly as an alternative to antibiotics in combating drug-resistant bacterial strains.

View Article and Find Full Text PDF

Human adenovirus (HAdV)-based oncolytic vectors, which are designed to preferentially replicate in and kill cancer cells, have shown modest efficacy in human clinical trials in part due to poor viral distribution throughout the tumor mass. Previously, we showed that expression of the p14 fusion-associated small transmembrane (FAST) fusogenic protein could enhance oncolytic HAdV efficacy and reduce tumor growth rate in a human xenograft mouse model of cancer. We now explore whether co-expression of the adenovirus death protein (ADP) with p14 FAST protein could synergize to further enhance oncolytic vector efficacy.

View Article and Find Full Text PDF

Hemolysins are lytic exotoxins expressed in most strains of , but hemolytic activity varies between strains. We have previously reported several novel anti-virulence compounds that disrupt the transcriptome, including hemolysin gene expression. This report delves further into our two lead compounds, loratadine and a structurally related brominated carbazole, and their effects on hemolysin production in methicillin-resistant (MRSA).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how Cry and Vip proteins from Bacillus thuringiensis (Bt) are used to combat major pests like the cotton bollworm, Helicoverpa armigera.
  • It investigates the role of insect aquaporin (AQP) proteins in facilitating rapid water influx in larval midgut cells after Cry toxin damages cell membranes.
  • Despite identifying several functional HaAQPs, knocking out any single AQP gene did not significantly affect the pest's susceptibility to Bt toxins, indicating a compensatory mechanism among the AQPs.
View Article and Find Full Text PDF

Genome sequence of Xenia2 a DV cluster phage that infects .

Microbiol Resour Announc

September 2024

Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA.

Xenia2 is a DV cluster actinobacteriophage that infects NRRL B-16540. The genome is 68,135bp, has a GC content of 57.9% and 98 predicted protein-coding genes, 33 of which have a predicted function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!