Periostin was originally isolated as an osteoblast-specific factor that functions as a cell adhesion molecule for preosteoblasts and is thought to be involved in osteoblast recruitment, attachment, and spreading. The protein was renamed "periostin" because of its expression in the periosteum and periodontal ligament, indicating a potential role in bone and maintenance of tooth structure. Periostin has structural similarity to insect fasciclin-I and can be induced by TGF-beta and Bmp2. Because tooth and periodontium development is a well-described genetic model for organogenesis governed by a reciprocal set of epithelial-mesenchymal interactions, thought to be controlled by various TGF-beta superfamily members, we investigated whether periostin is present during tooth morphogenesis. Both periostin mRNA and protein expression were analyzed throughout normal tooth development (embryonic day [E] 9.5-newborn) and within both Bmp4- and Msx2-null embryos. Periostin mRNA is initially present within the E9.5 first branchial arch epithelium and then shifts to underlying ectomesenchyme. Both mRNA and protein are asymmetrically localized to the lingual/palatal and buccal side during the early epithelial-mesenchymal interactions. Periostin is also present in dental papilla cells and within the trans-differentiating odontoblasts during the bell and hard tissue formation stages of tooth development. We suggest that periostin plays multiple roles as a primary responder molecule during tooth development and may be linked to deposition and organization of other extracellular matrix adhesion molecules during maintenance of the adult tooth, particularly at the sites of hard-soft tissue interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.10453 | DOI Listing |
J Sci Food Agric
January 2025
Genomics and Health Department, FISABIO Foundation, Valencia, Spain.
Certain dietary fibers exhibit prebiotic effects on gut microbiota, but their influence on oral health remains unclear. This study conducted a systematic review across four databases to examine the potential effects of dietary fibers on dental caries. Data selection and extraction were conducted independently and in duplicate.
View Article and Find Full Text PDFiScience
January 2025
Department of Orthodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070, P.R. China.
Dental caries is a common disease resulting from tooth demineralization caused by bacterial plaque. Probiotics have shown great potential against caries by regulating the balance of oral flora. However, obstacles such as poor colonization and lysozyme sensitivity in oral cavity hinder their further application.
View Article and Find Full Text PDFJ Oral Biol Craniofac Res
December 2024
Department of Oral Biology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India.
Aim: Odontogenesis is a complex and highly regulated biological process that involves a range of molecular mechanisms. Among these, Ki67 and Cyclin D1 are crucial cell cycle regulators that play pivotal roles in controlling cell proliferation during tooth development. This study aims to provide detailed insights into the expression patterns and functional significance of Ki67 and Cyclin D1 in tooth development.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Pediatric Dentistry Department, Faculty of Dentistry, Başkent University, 06490, Ankara, Turkey.
Background: Hypodontia is the absence of one or more teeth in the primary or permanent dentition during development, and radiographic imaging is the most common method of diagnosis. However, in recent years, artificial intelligence-based decision support systems have been employed to make highly accurate diagnoses. The aim of this study was to classify single premolar agenesis, multiple premolar agenesis, and without tooth agenesis using various artificial intelligence approaches.
View Article and Find Full Text PDFJ Dent
January 2025
Clinic of General-, Special Care- and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland. Electronic address:
Objective: This study aimed to investigate the resin compounds from CAD-CAM 3D-printed denture resins, focusing on the identification and classification of free monomers and other components. The primary objective was to determine the chemical profile of these 3D-prinding resin materials.
Methods: Four 3D-printed denture resins, two base materials (1: DentaBASE, Asiga Ltd.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!