Previous studies have shown that exposure to an electromagnetic field (EMF) of 37 Hz at a flux density of 80 microT peak enhances nociceptive sensitivity in mice. Here we examined the effects on pain sensitivity and some indexes of cardiovascular regulation mechanisms in humans by measuring electrical cutaneous thresholds, arterial blood pressure, heart rate and its variability, and stress hormones. Pain and tolerance thresholds remained unchanged after sham exposure but significantly decreased after electromagnetic exposure. Systolic blood pressure was significantly higher during electromagnetic exposure and heart rate significantly decreased, both during sham and electromagnetic exposure, while the high frequency (150-400 mHz) component of heart rate variability, which is an index of parasympathetic activity, increased as expected during sham exposure but remained unchanged during electromagnetic exposure. Cortisol significantly decreased during sham exposure only. These results show that exposure to an EMF of 37 Hz also alters pain sensitivity in humans and suggest that these effects may be associated with abnormalities in cardiovascular regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bem.10180DOI Listing

Publication Analysis

Top Keywords

electromagnetic exposure
16
blood pressure
12
heart rate
12
sham exposure
12
exposure
10
exposure electromagnetic
8
electromagnetic field
8
pain sensitivity
8
cardiovascular regulation
8
rate variability
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!