Background: Histone deacetylase 1 (HDAC1) is a co-repressor involved in differentiation and proliferation control. It is upregulated in malignant compared to benign tissue, and targets a number of transcription factors including p53.

Methods: By immunohistochemistry, HDAC1 protein expression was investigated in human prostate specimens and the CWR22 mouse xenograft model. Flow cytometry and deconvolution immunofluorescence were also performed.

Results: HDAC1 was upregulated in pre-malignant and malignant lesions, with the highest increase in expression in hormone refractory (HR) cancer. Using the CWR22 xenograft model we showed androgen dependent regulation of HDAC1. HDAC1 overexpression led to a significant increase in proliferation and a shift towards the undifferentiated cytokeratin (CK) profile in a PC3M derivative clone constitutively expressing HDAC1.

Conclusion: This study underlines the importance of HDAC1 in cell proliferation and the development of prostate cancer (CaP) and proposes a mechanism for HDAC1 nuclear recruitment. HDAC1 may constitute a crucial therapeutic target particularly in the most lethal phase of androgen independence.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pros.20022DOI Listing

Publication Analysis

Top Keywords

hdac1
9
nuclear recruitment
8
recruitment hdac1
8
hormone refractory
8
prostate cancer
8
xenograft model
8
upregulation nuclear
4
hdac1 hormone
4
refractory prostate
4
cancer background
4

Similar Publications

Liver regeneration is intricate, involves many cells, and necessitates extended research. This study aimed to investigate the response of liver oval cells (bipotent liver progenitors) to the epigenetic modifier trichostatin A (TSA), an HDAC1 inhibitor, and to develop a scoring system for assessing the response of these cells. Three groups of equally divided rats (n=24) were selected: control (A, dimethyl sulfoxide treated); oval cell induction (B, acetylaminofluorene [2-AAF] to block hepatocyes/carbon tetrachloride [CCL4] to induce oval cell response); and epigenetic modulation (C, TSA post 2-AAF/CCL4 injury).

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

Development of the First-in-Class FEM1B-Recruiting Histone Deacetylase Degraders.

J Med Chem

January 2025

Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, University of Bonn institution, An der Immenburg 4, Bonn 53121, Germany.

Targeted protein degradation (TPD) represents a promising alternative to conventional occupancy-driven protein inhibition. Despite the existence of more than 600 E3 ligases in the human proteome, so far only a few have been utilized for TPD of histone deacetylases (HDACs), which represent important epigenetic anticancer drug targets. In this study, we disclose the first-in-class Fem-1 homologue B (FEM1B)-recruiting HDAC degraders.

View Article and Find Full Text PDF

Post-translational modifications of histone H3 on lysine 9, specifically acetylation (H3K9ac) and tri-methylation (H3K9me3), play a critical role in regulating chromatin accessibility. However, the role of these modifications in lineage segregation in the mammalian blastocyst remains poorly understood. We demonstrate that di- and tri-methylation marks, H3K9me2 and H3K9me3, decrease during cavitation and expansion of the rabbit blastocyst.

View Article and Find Full Text PDF

Hepatoblastoma (HBL) and fibrolamellar hepatocellular carcinoma (FLC) are the most common liver malignancies in children and young adults. FLC oncogenesis is associated with the generation of the fusion kinase, DNAJB1-PKAc (J-PKAc). J-PKAc has been found in 90% of FLC patients' tumors but not in other liver cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!