Moderate levels of reactive oxygen species (ROS) have been implicated as second messengers in a number of biochemical pathways, and in animal cells have been associated with the activation of the heat shock response (HSR). Here, using an intracellular probe, we demonstrate that differential accumulation of ROS in the yeast Saccharomyces cerevisiae is strongly associated with differential induction of an HS reporter gene over a range of heat shock temperatures. There was a good correlation between cellular ROS levels and the levels of HS-induced reporter gene expression between 37 degrees C and 44 degrees C, both reaching maximal values at 41 degrees C. Furthermore, the addition of 150 microM H2O2 to the yeast cells during heat treatment resulted in a 3 degrees C decrease in the temperature required for maximal induction of the HS expression vector--an increased HS sensitivity that corresponded to a concomitant increase in ROS levels at these lower HS temperatures. Conversely, cells treated with 10 mM of the antioxidant ascorbic acid required a temperature that was 2 degrees C above that required in untreated controls for maximal induction of the HS expression vector. This decreased HS sensitivity corresponded to a decrease in ROS levels at these higher HS temperatures. Finally, cell viability assays reveal that intrinsic thermotolerance remains high in control cells despite concomitant decreases in HS-reporter gene expression and ROS accumulation between 41 degrees C and 44 degrees C. We conclude that the sensitivity of the yeast HSR is strongly associated with ROS accumulation, and suggest that ROS-mediated signalling ensures cooperation between the HS and the antioxidant responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/yea.1078 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFPlant Physiol
December 2024
Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 00 Prague 6, Czech Republic.
Pollen germination and pollen tube (PT) growth are extremely sensitive to high temperatures. During heat stress (HS), global translation shuts down and favors the maintenance of the essential cellular proteome for cell viability and protection against protein misfolding. Here, we demonstrate that under normal conditions, the Arabidopsis (Arabidopsis thaliana) eukaryotic translation initiation factor subunit eif3m1/eif3m2 double mutant exhibits poor pollen germination, loss of PT integrity and an increased rate of aborted seeds.
View Article and Find Full Text PDFFASEB J
January 2025
Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, China.
Gestational Diabetes Mellitus (GDM) is the most frequent complication during pregnancy. Pharmacological interventions, such as peptide drugs that focused on improving the insulin sensitivity might be promising in the prevention and treatment of GDM. In this study, we aimed to investigate the role and mechanism of a novel peptide, named AGDMP1 (Anti-GDM peptide 1), which we previously identified lower in the serum of GDM patients using mass spectrometry, on the adipose insulin resistance in GDM.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Calcium (Ca)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Department of Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain.
Sterol composition plays a crucial role in determining the ability of yeast cells to withstand high temperatures, an essential trait in biotechnology. Using a targeted evolution strategy involving fluconazole (FCNZ), an inhibitor of the sterol biosynthesis pathway, and the immunosuppressant FK506, we aimed to enhance thermotolerance in an industrial baker's yeast population by modifying their sterol composition. This approach yielded six isolates capable of proliferating in liquid YPD with μ values ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!