Heated electrodes were applied for the non-isothermal operation of amperometric glucose biosensors based on glucose oxidase immobilised on the electrode surface by entrapment within a polymer layer. The localised deposition of the polymer film under simultaneous entrapment of the enzyme was achieved by an electrochemically induced pH-modulation in the diffusion zone in front of the electrode, thus altering the solubility of the polymer chains. This non-manual sensor preparation protocol could be successfully used for the modification of a novel indirectly heated electrode. The non-isothermal operating mode allows working at the optimum temperature of the enzyme sensors without any thermal distortion of the bulk solution. Increased surface temperature of the sensor thus accelerates transport as well as kinetic processes, resulting in an enhanced amperometric signal. In the presence of interfering compounds such as ascorbic acid, the proposed technique allows use of the diverging thermal impact on the sensing process, for different electrochemically active compounds, for a deconvolution of the amperometric signal at different electrode temperatures. A calculation method for determination of glucose in the presence of one interfering compound is presented as a basis for a calculative interference elimination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-004-2585-2 | DOI Listing |
Anim Sci J
January 2025
Faculty of Agriculture, Iwate University, Morioka, Japan.
The pH of venison is affected by deer capture methods, which affects its water-holding capacity (WHC) during heating. Therefore, cooking or processing venison requires careful consideration of WHC at different pH levels. While this requires nondestructively measuring the pH of venison during distribution, there are no established methods to nondestructively distinguish between normal- and high-pH meats.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia.
This paper presents the initial results of the synthesis of β-GaO luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-GaO with particle sizes ranging from 5 to 50 μm.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, People's Republic of China.
Water electrolysis suffers from electron transfer barriers during oxygen evolution reactions, which are spin-related for magnetic materials. Here, the electron transfer at the Fe_{64}Ni_{36}-FeNiO_{x}H_{y} interface is effectively accelerated when the electrode is heated to trigger the Invar effect in Fe_{64}Ni_{36} Invar alloy, providing more unoccupied orbitals as electron transfer channels without pairing energy. As a result of thermally stimulated changes in electronic states, Fe_{64}Ni_{36}/FeNiO_{x}H_{y} achieved a cascaded oxidation of the catalytic center and water.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, P.R. China.
Indium (In) reduction is a hot topic in transparent conductive oxide (TCO) research. So far, most strategies have been focused on reducing the layer thickness of In-based TCO films and exploring TCOs. However, no promising industrial solution has been obtained yet.
View Article and Find Full Text PDFTalanta
December 2024
Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:
The flap endonuclease 1 (FEN1) plays a key role in DNA replication and repair, its aberrant expression is associated with tumor development, so it has been recognized as a promising biomarker for a variety of cancers. Here, a novel "turn on" mode gold nanocube-enhanced surface-enhanced Raman scattering (SERS) biosensor was constructed by combining a heated Au electrode (HAuE), exonuclease III (Exo III)-assisted cycle amplification, and gold nanocube (AuNC)-based SERS enhancement to achieve highly sensitive detection of FEN1 activity. The SERS tag was prepared using the Raman reporter modified on the AuNC surface, and the high electromagnetic field provided by the sharp geometric feature of AuNC greatly enhanced the SERS signal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!