A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The external K+ concentration and mutations in the outer pore mouth affect the inhibition of kv1.5 current by Ni2+. | LitMetric

By examining the consequences both of changes of [K+]o and of point mutations in the outer pore mouth, our goal was to determine if the mechanism of the block of Kv1.5 ionic currents by external Ni2+ is similar to that for proton block. Ni2+ block is inhibited by increasing [K+]o, by mutating a histidine residue in the pore turret (H463Q) or by mutating a residue near the pore mouth (R487V) that is the homolog of Shaker T449. Aside from a slight rightward shift of the Q-V curve, Ni2+ had no effect on gating currents. We propose that, as with Ho+, Ni2+ binding to H463 facilitates an outer pore inactivation process that is antagonized by Ko+ and that requires R487. However, whereas Ho+ substantially accelerates inactivation of residual currents, Ni2+ is much less potent, indicating incomplete overlap of the profiles of these two metal ions. Analyses with Co2+ and Mn2+, together with previous results, indicate that for the first-row transition metals the rank order for the inhibition of Kv1.5 in 0 mM Ko+ is Zn2+ (KD approximately 0.07 mM) > or = Ni2+) (KD approximately 0.15 mM) > Co2+ (KD approximately 1.4 mM) > Mn2+ (KD > 10 mM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304074PMC
http://dx.doi.org/10.1016/S0006-3495(04)74282-4DOI Listing

Publication Analysis

Top Keywords

outer pore
12
pore mouth
12
mutations outer
8
inhibition kv15
8
residue pore
8
co2+ mn2+
8
ni2+
7
pore
5
external concentration
4
concentration mutations
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!