Functional influence of the pore helix glutamate in the KcsA K+ channel.

Biophys J

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.

Published: April 2004

The E71 residue is buried near the selectivity filter in the KcsA K+ channel and forms a carboxyl-carboxylate bridge with D80. We have investigated the importance of E71 by examining neutralization mutants at this position using biochemical and electrophysiological methods. E71 mutations differentially destabilize the detergent-solubilized tetramer; among them, the E71V neutralization mutant has a relatively subtle effect. The E71V channel displays electrical activity when reconstituted into planar lipid bilayers. In single channel recordings, the mutant retains K+/Na+ selectivity, and its conductance in the outward direction is unaltered. Some conduction properties are changed: inward conductance is increased. Our results show that that the E71 side chain is not a primary determinant of ion selectivity or conduction in the wild-type channel, either directly or through the E71:D80 carboxyl-carboxylate bridge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1304065PMC
http://dx.doi.org/10.1016/S0006-3495(04)74273-3DOI Listing

Publication Analysis

Top Keywords

kcsa channel
8
carboxyl-carboxylate bridge
8
channel
5
functional influence
4
influence pore
4
pore helix
4
helix glutamate
4
glutamate kcsa
4
e71
4
channel e71
4

Similar Publications

Heteropolyacid Ligands in Two-Dimensional Channels Enable Lithium Separation from Monovalent Cations.

ACS Nano

January 2025

Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China.

Extracting lithium from salt lakes requires ion-selective membranes with customizable nanochannels. However, it remains a major challenge to separate alkali cations due to their same valences and similar ionic radius. Inspired by the K channel of KcsA K, significant progress has been made in adjusting nanochannel size to control the ion selectivity dominated by alkali cations dehydration.

View Article and Find Full Text PDF

Mechanism of selectivity filter constriction in potassium channel: Insights from high-throughput steered molecular dynamics simulations.

Biochem Biophys Res Commun

December 2024

Department of Mechanics, College of Architecture & Environment, & Failure Mechanics and Engineering Disaster Prevention, Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610065, China. Electronic address:

Potassium channels are essential for regulating cellular excitability by controlling K ion flow. In voltage-gated potassium (Kv) channels, C-type inactivation modulates action potentials and holds significant physiological and clinical importance. The selectivity filter (SF) of potassium channels functions as the C-type inactivation gate by alternating between conductive and non-conductive states.

View Article and Find Full Text PDF

Regulation of transmembrane current through modulation of biomimetic lipid membrane composition.

Faraday Discuss

October 2024

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

Ion transport through biological channels is influenced not only by the structural properties of the channels themselves but also by the composition of the phospholipid membrane, which acts as a scaffold for these nanochannels. Drawing inspiration from how lipid membrane composition modulates ion currents, as seen in the activation of the K channel in Streptomyces A (KcsA) by anionic lipids, we propose a biomimetic nanochannel system that integrates DNA nanotechnology with two-dimensional graphene oxide (GO) nanosheets. By modifying the length of the multibranched DNA nanowires generated through the hybridization chain reaction (HCR) and varying the concentration of the linker strands that integrate these DNA nanowire structures with the GO membrane, the composition of the membrane can be effectively adjusted, consequently impacting ion transport.

View Article and Find Full Text PDF

The biological membrane is not just a platform for information processing but also a field of mechanics. The lipid bilayer that constitutes the membrane is an elastic body, generating stress upon deformation, while the membrane protein embedded therein deforms the bilayer through structural changes. Among membrane-protein interplays, various channel species act as tension-current converters for signal transduction, serving as elementary processes in mechanobiology.

View Article and Find Full Text PDF

Building predictive Markov models of ion channel permeation from molecular dynamics simulations.

Biophys J

November 2024

Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi", University of Bologna, via dell'Università 50, Cesena (FC), Italy. Electronic address:

Molecular dynamics (MD) simulation of biological processes has always been a challenging task due to the long timescales of the processes involved and the large amount of output data to handle. Markov state models (MSMs) have been introduced as a powerful tool in this area of research, as they provide a mechanistically comprehensible synthesis of the large amount of MD data and, at the same time, can be used to rapidly estimate experimental properties of biological processes. Herein, we propose a method for building MSMs of ion channel permeation from MD trajectories, which directly evaluates the current flowing through the channel from the model's transition matrix (T), which is crucial for comparing simulations and experimental data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!