Calpain as a multi-site regulator of cell cycle.

Biochem Pharmacol

Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary.

Published: April 2004

Calpain has long been implicated in the regulation of cell cycle, mostly based on studies with inhibitors that lack strict specificity toward the enzyme. Further, previous work has primarily focused on one particular point, the G(1) checkpoint, and made no attempt at dissecting the full cycle in terms of calpain action. To extend and complement these findings, we tested the effect of a specific inhibitor, PD 150606, on granulocyte-macrophage-colony stimulating factor (GM-CSF)-stimulated human TF-1 cells by flow cytometry following single- and double labelling by propidium iodide and bromodeoxyuridine. Using a new algorithm of analysis, we determined the time-dependence of the absolute number of cells leaving G(1), S and G(2)M phases following the application of the inhibitor. Our results point to the simultaneous involvement of calpain activity in promoting the cycle at the G(1) checkpoint and somewhere in the G(2)M compartment. Furthermore, the inhibitor significantly impedes the progress of cells through the S phase, indicating calpain activity in S phase checkpoint signalling. Overall, our analysis suggests that calpain regulates the cell cycle at more points than previously thought.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2003.12.021DOI Listing

Publication Analysis

Top Keywords

cell cycle
12
calpain activity
8
calpain
6
cycle
5
calpain multi-site
4
multi-site regulator
4
regulator cell
4
cycle calpain
4
calpain long
4
long implicated
4

Similar Publications

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA.

View Article and Find Full Text PDF

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

The world is moving towards the utilization of hydrogen vehicle technology because its advantages are uniformity in power production, more efficiency, and high durability when compared to fossil fuels. So, in this work, the Proton Exchange Membrane Fuel Stack (PEMFS) device is selected for producing the energy for the hydrogen vehicle. The merits of this fuel technology are the possibility of operating less source temperature, and more suitability for stationery and transportation applications.

View Article and Find Full Text PDF

Breast cancer is a leading cause of cancer-related deaths among women globally. It is imperative to explore novel biomarkers to predict breast cancer treatment response as well as progression. Here, we collected six breast cancer samples and paired normal tissues for high-throughput sequencing.

View Article and Find Full Text PDF

Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!