Single chain antibodies (ScFvs) are heavy and light chain variable domains connected by an artificial linker. Because of their smaller size, ScFvs show improved tissue penetration in vivo and reduced immunogenicity, making them ideal for therapeutic applications. We have cloned a ScFv against western equine encephalitis (WEE) using rDNA technology. The ScFv was generated from a hybridoma cell line (11D2) specific to the WEE virus E1 glycoprotein and is arranged in the V(L)-V(H) orientation with a (gly(4)ser)(3) linker. This ScFv was engineered successfully with a biotin mimic tag (11 amino acid peptide) and cloned in the pET22b+ expression vector. The ScFv was expressed as a approximately 32kDa protein in Escherichia coli as inclusion bodies, with an estimated yield of 20-40 mg/l. Different refolding protocols were used to solubilise the inclusion bodies. Most of the functional ScFv was generated when the inclusion bodies were solubilized in a detergent, air oxidised in the presence of CuSO(4) and then denatured in urea buffer in comparison to other protocols. The product was renatured finally in Tris arginine buffer (pH 8.0). Refolded protein was dialysed against phosphate buffer saline (PBS) (pH 7.3) to remove the Tris and arginine. Our refolding protocol generated up to a 50% yield of soluble protein, which retained antigen-binding activity with whole inactivated WEE virus as demonstrated by ELISA and Western blot analysis. This 11D2-biotin mimic ScFv complexed with streptavidin horseradish peroxidase (St-HRPO) will be useful as a detector reagent in the ultrasensitive ELISA detection of WEE virus antigen.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jviromet.2004.01.008DOI Listing

Publication Analysis

Top Keywords

wee virus
12
inclusion bodies
12
biotin mimic
8
western equine
8
equine encephalitis
8
scfv generated
8
tris arginine
8
scfv
7
development biotin
4
mimic tagged
4

Similar Publications

After decades of inactivity throughout the Americas, western equine encephalitis virus (WEEV) recently re-emerged in South America, causing a large-scale outbreak in humans and horses. WEEV binds protocadherin 10 (PCDH10) as a receptor; however, nonpathogenic strains no longer bind human or equine PCDH10 but retain the ability to bind avian receptors. Highly virulent WEEV strains can also bind the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as alternative receptors.

View Article and Find Full Text PDF

nsP2 Protease Inhibitor Blocks the Replication of New World Alphaviruses and Offer Protection in Mice.

ACS Infect Dis

January 2025

Chemistry and Biotechnology Science and Engineering Program, College of Science, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States.

New World alphaviruses, including Venezuelan equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and western equine encephalitis virus (WEEV), are mosquito-transmitted viruses that cause disease in humans. These viruses are endemic to the western hemisphere, and disease in humans may lead to encephalitis and long-term neurological sequelae. There are currently no FDA-approved vaccines or antiviral therapeutics available for the prevention or treatment of diseases caused by these viruses.

View Article and Find Full Text PDF

Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure.

Front Neurosci

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States.

Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs.

View Article and Find Full Text PDF

Cellular takeover: How new world alphaviruses impact host organelle function.

Virology

December 2024

Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA; Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA. Electronic address:

Alphavirus replication is dependent on host cell organelles to facilitate multiple steps of the viral life cycle. New world alphaviruses (NWA) consisting of eastern, western and Venezuelan equine encephalitis viruses are a subgroup of alphaviruses associated with central nervous system disease. Despite differing morbidity and mortality amongst these viruses, all are important human pathogens due to their transmission through viral aerosolization and mosquito transmission.

View Article and Find Full Text PDF

Long-term multi-systemic complications after SARS-CoV-2 Omicron and Delta infection in children: a retrospective cohort study.

Clin Microbiol Infect

December 2024

National Centre for Infectious Diseases, Singapore; Duke-NUS Graduate Medical School, National University of Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ministry of Health, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore.

Objectives: Most studies on long-term sequelae of SARS-CoV-2 infection in children were conducted pre-Omicron and pre-dated vaccination rollout. We examined long-term risk of new-incident multi-systemic sequelae following SARS-CoV-2 Delta/Omicron infection in a multi-ethnic Asian paediatric population.

Methods: Retrospective cohort study of Singaporean children aged 1-17 years infected during Delta/Omicron BA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!