Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Solid solutions of (1'-x)Pb(Mg(1/3)Nb(2/3))O3xPb(Sc(1/2)Nb(1/2))O3 (PMN/PSN) have been investigated using high-resolution 93Nb 3-quantum magic-angle spinning nuclear magnetic resonance experiments (3QMAS NMR). In previous MAS NMR investigations, the local B-cation ordering in these relaxor ferroelectric solid solutions was quantitatively determined. However, in conventional one-dimensional MAS spectra the effects of chemical shifts and quadrupole interaction are convoluted; this, in addition to the insufficient resolution, precludes reliable extraction of the values of isotropic chemical shift and quadrupole coupling product. In the current 3QMAS investigation, 93Nb spectra are presented for concentrations x=0, 0.1, 0.2, 0.6, 0.7, and 0.9 at high magnetic field (19.6 T) and fast sample spinning speed (35.7 kHz). Seven narrow peaks and two broad components are observed. The unique high-resolution of the two-dimensional 3QMAS spectra enables unambiguous and consistent assignments of spectral intensities to the specific 28 nearest B-site neighbor (nBn) configurations, (NMg, NSc, NNb) where each number ranges from 0 to 6 and their sum is 6. It is now possible to isolate the isotropic chemical shift and quadrupole coupling product and separately determine their values for most of the 28 nBn configurations. The isotropic chemical shift depends linearly on the number of Mg2+ cations in the configuration; delta iso CS=(13.7 +/- 0.1)NMg-970 +/- 0.4 ppm, regardless of the ratio NSc/NNb. For the seven Nb5+-deficient configurations (NMg, 6-NMg, 0) and the pure niobium configuration (0, 0, 6), the quadrupole coupling products (and hence the electric field gradients) are small (PQ approximately 6-12 MHz) and for the remaining configurations containing small, ferroelectric active Nb5+ ions, the quadrupole coupling products are significantly larger (PQ approximately 40 MHz), indicating larger electric field gradients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2003.12.015 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!