Unlabelled: A study of a polymorphism in the MTHFR gene, plasma folate, and bone phenotypes in 1632 individuals revealed that the genotype effect on BMD and quantitative ultrasound was dependent on the level of folate. Our findings support the hypothesis that the association between an MTHFR polymorphism and bone phenotypes depends on folate status.
Introduction: Genome-wide screens using quantitative ultrasound (QUS) and BMD phenotypes have shown suggestive linkage on chromosome 1pter-1p36.3, a region containing the methylenetetrahydrofolate reductase (MTHFR) gene. Individuals homozygous (TT) for the MTHFR C677T polymorphism who have low plasma folate concentrations exhibit elevated plasma homocysteine (tHcy) concentrations that may compromise bone quality. We hypothesized that folate status might modify an association between the C677T polymorphism and bone, possibly by influencing homocysteine concentrations.
Materials And Methods: QUS (broadband ultrasound attenuation [BUA], speed of sound, and quantitative ultrasound index) of the heel and BMD of the hip and spine were measured in 1632 male and female members of the Framingham Offspring Study (1996-2001). Participants were assessed for plasma folate concentration and genotyped for the MTHFR C677T polymorphism. TT participants were compared with individuals in the CC + CT group using analysis of covariance.
Results: Adjusted mean QUS and BMD measures did not differ between C677T groups. Although all participants with plasma folate concentrations > or =4 ng/ml had approximately 2% higher QUS and BMD than those with folate <4 ng/ml, the association disappeared after controlling for tHcy. Suggestive interactions between folate status and the C677T group (CC + CT versus TT) were found for hip BMD (p < or = 0.05) and BUA (p = 0.11). Compared with CC + CT participants, TT individuals had lower mean BUA (p = 0.06) and Ward's area BMD (p = 0.08) within the folate <4 ng/ml group and significantly higher hip BMD (p < or = 0.05) within the folate > or =4 ng/ml group. For both folate groups, TT participants had higher age-adjusted mean plasma tHcy versus CC + CT participants. Controlling for tHcy in these models did not affect the statistical significance of the interaction effects.
Conclusions: Our findings support the hypothesis that the association between the C677T MTHFR polymorphism and bone phenotypes depends on folate status. The mechanism mediating the association, however, remains unclear, but may be partially caused by homocysteine effects on bone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1359/JBMR.0301261 | DOI Listing |
ACS Omega
January 2025
Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
Chemical polymerization/oligomerization opens numerous opportunities, from fundamental materials research to practical applications in catalysis, energy, sensing, and medicine. The electrochemical detection of vitamins B (folic acid) and C (ascorbic acid) requires new approaches because of low selectivity, electrode fouling, and interference from other chemicals. As an excellent material for long-term vitamin detection, oligo 3,5-diamino-1,2,4-triazole (oligo DAT) enhances the sensitivity, selectivity, and stability of sensors by creating a stable, conductive layer that facilitates electron transfer and reduces interference from common substances like glucose or uric acid.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Genes Nutr
January 2025
Department of Nutrition, University of Oslo (UiO), Oslo, Norway.
Background: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.
View Article and Find Full Text PDFNutrients
December 2024
Departments of Human Genetics and Pediatrics, McGill University, Montreal, QC H3A 0C7, Canada.
Background/objectives: The gene variant results in a thermolabile MTHFR enzyme associated with elevated plasma homocysteine in TT individuals. Health risks associated with the TT genotype may be modified by dietary and supplemental folate intake. Supplementation with methyltetrahydrofolate (methylTHF) may be preferable to folic acid because it is the MTHFR product, and does not require reduction by DHFR to enter one-carbon folate metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!