AI Article Synopsis

Article Abstract

Visual pigments from the red rods of adults of eight species of Australian anuran amphibians, from a variety of habitats, were analyzed by microspectrophotometry. The lambda max in all cases fell between 502 nm and 506 nm, and the absorption spectra were well fitted by an A1-based visual pigment template curve. Red rod pigments were also analyzed for a number of tadpoles. In some cases the data were best fitted with an A1-based visual pigment template, in other cases with an A2-based template, and finally some tadpoles appeared to have mixtures of the two pigments.

Download full-text PDF

Source
http://dx.doi.org/10.1017/s0952523800009597DOI Listing

Publication Analysis

Top Keywords

visual pigments
8
fitted a1-based
8
a1-based visual
8
visual pigment
8
pigment template
8
microspectrophotometric determinations
4
determinations rod
4
visual
4
rod visual
4
pigments
4

Similar Publications

Discovery of non-retinoid compounds that suppress the pathogenic effects of misfolded rhodopsin in a mouse model of retinitis pigmentosa.

PLoS Biol

January 2025

Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Pathogenic mutations that cause rhodopsin misfolding lead to a spectrum of currently untreatable blinding diseases collectively termed retinitis pigmentosa. Small molecules to correct rhodopsin misfolding are therefore urgently needed. In this study, we utilized virtual screening to search for drug-like molecules that bind to the orthosteric site of rod opsin and improve its folding and trafficking.

View Article and Find Full Text PDF

Visual pigments underlie the sensitivity difference between day and night vision.

Proc Natl Acad Sci U S A

January 2025

Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research Programme, University of Helsinki, Helsinki 00790, Finland.

View Article and Find Full Text PDF

Mechanisms of Rhodopsin-Related Inherited Retinal Degeneration and Pharmacological Treatment Strategies.

Cells

January 2025

Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

Retinitis pigmentosa (RP) is a hereditary disease characterized by progressive vision loss ultimately leading to blindness. This condition is initiated by mutations in genes expressed in retinal cells, resulting in the degeneration of rod photoreceptors, which is subsequently followed by the loss of cone photoreceptors. Mutations in various genes expressed in the retina are associated with RP.

View Article and Find Full Text PDF

Microbial rhodopsin-derived genetically encoded voltage indicators (GEVIs) are powerful tools for mapping bioelectrical dynamics in cell culture and in live animals. Förster resonance energy transfer (FRET)-opsin GEVIs use voltage-dependent quenching of an attached fluorophore, achieving high brightness, speed, and voltage sensitivity. However, the voltage sensitivity of most FRET-opsin GEVIs has been reported to decrease or vanish under two-photon (2P) excitation.

View Article and Find Full Text PDF

The recent discovery of nonvisual photoreceptors in various organs has raised expectations for uncovering their roles and underlying mechanisms. In this work, we identified a previously unrecognized hormone-releasing mechanism in the pituitary of the Japanese rice fish (medaka) induced by light. Ca imaging analysis revealed that melanotrophs, a type of pituitary endocrine cell that secretes melanocyte-stimulating hormone, robustly increase the concentration of intracellular Ca during short-wavelength light exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!