Primordial germ cells: what does it take to be alive?

Mol Reprod Dev

Department of Cell Biology and Anatomical Sciences, The Sophie Davis School of Biomedical Education, The City University of New York Medical School, New York, New York 10031, USA.

Published: May 2004

Specification of primordial germ cells (PGCs) in the proximal epiblast enables about 45 founder PGCs clustered at the base of the allantoic bud to enter the embryo by active cell movement. Specification of the PGC lineage depends on paracrine signals derived from the somatic cell neighbors in the extraembryonic ectoderm. Secretory bone morphogenetic proteins (BMP) 4, BMP8b, and BMP2 and components of the Smad signaling pathway participate in the specification of PGCs. Cells in the extraembryonic ectoderm induce expression of the gene fragilis in the epiblast in the presence of BMP4, targeting competence of PGCs. The fragilis gene encodes a family of transmembrane proteins presumably involved in homotypic cell adhesion. As PGCs migrate throughout the hindgut, they express nanos3 protein. In the absence of nanos3 gene expression, no germ cells are detected in ovary and testis. During migration and upon arrival at the genital ridges, the population of PGCs is regulated by a balanced proliferation/programmed cell death or apoptosis. Paracrine and autocrine mechanisms, involving transforming growth factor-beta1 and fibroblast growth factors exert stimulatory or inhibitory effects on PGCs proliferation, modulated in part by the membrane-bound form of stem cell factor. Apoptosis requires the participation of the pro-apoptotic family member Bax, whose activity is balanced by the anti-apoptotic family member Bcl21/Bcl-x. In addition, a loss of cell-cell contacts in vitro results in the apoptotic elimination of PGCs. It needs to be determined whether apoptosis is triggered by a failure of PGC to establish and maintain appropriate cell-cell contacts with somatic cells or whether undefined survival factors released by adjacent somatic cells cannot reach physiological levels to satisfy needs of the expanding population of PGCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrd.20056DOI Listing

Publication Analysis

Top Keywords

germ cells
12
pgcs
9
primordial germ
8
extraembryonic ectoderm
8
population pgcs
8
family member
8
cell-cell contacts
8
somatic cells
8
cells
6
cell
5

Similar Publications

Meiosis and retinoic acid in the mouse fetal gonads: An unforeseen twist.

Curr Top Dev Biol

January 2025

Université de Strasbourg, IGBMC UMR 7104, Illkirch, France; CNRS, UMR 7104, Illkirch, France; Inserm, UMR-S 1258, Illkirch, France; IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France. Electronic address:

In mammals, differentiation of germ cells is crucial for sexual reproduction, involving complex signaling pathways and environmental cues defined by the somatic cells of the gonads. This review examines the long-standing model positing that all-trans retinoic acid (ATRA) acts as a meiosis-inducing substance (MIS) in the fetal ovary by inducing expression of STRA8 in female germ cells, while CYP26B1 serves as a meiosis-preventing substance (MPS) in the fetal testis by degrading ATRA and preventing STRA8 expression in the male germ cells until postnatal development. Recent genetic studies in the mouse challenge this paradigm, revealing that meiosis initiation in female germ cells can occur independently of ATRA signaling, with key roles played by other intrinsic factors like DAZL and DMRT1, and extrinsic signals such as BMPs and vitamin C.

View Article and Find Full Text PDF

The action of retinoic acid on spermatogonia in the testis.

Curr Top Dev Biol

January 2025

School of Molecular Biosciences, Washington State University, Pullman, Washington, United States. Electronic address:

For mammalian spermatogenesis to proceed normally, it is essential that the population of testicular progenitor cells, A undifferentiated spermatogonia (A), undergoes differentiation during the A to A1 transition that occurs at the onset of spermatogenesis. The commitment of the A population to differentiation and leaving a quiescent, stem-like state gives rise to all the spermatozoa produced across the lifespan of an individual, and ultimately determines male fertility. The action of all-trans retinoic acid (atRA) on the A population is the determining factor that induces this change.

View Article and Find Full Text PDF

Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.

Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.

View Article and Find Full Text PDF

Background: The oocyte retrieval is a critical step in assisted reproductive technologies, including in vitro fertilization and fertility preservation. Despite evolving techniques, the optimal aspiration pressure during retrieval remains debatable, with limited in vivo human studies. Existing studies, primarily in vitro and on animals, suggest that inappropriate aspiration pressures can impair oocyte quality.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!