The significance of circulating factor IXa in blood.

J Biol Chem

Department of Biochemistry, University of Vermont, Burlington, Vermont 05405-0068, USA.

Published: May 2004

AI Article Synopsis

  • The study investigates the role of activation peptides (AP) from vitamin K-dependent proteins in blood and their relationship to active serine proteases.
  • It finds that trace amounts of key coagulation factors (factor IXa and factor Xa) can generate thrombin without needing tissue factor, potentially leading to rapid clot formation.
  • The results indicate that, in vivo, circulating concentrations of these active enzymes are much lower than suggested by AP levels, with factor IXa being particularly important for thrombin generation.

Article Abstract

The presence of activation peptides (AP) of the vitamin K-dependent proteins in the phlebotomy blood of human subjects suggests that active serine proteases may circulate in blood as well. The goal of the current study was to evaluate the influence of trace amounts of key coagulation proteases on tissue factor-independent thrombin generation using three models of coagulation. With procoagulants and select coagulation inhibitors at mean physiological concentrations, concentrations of factor IXa, factor Xa, and thrombin were set either equal to those of their AP or to values that would result based upon the rates of AP/enzyme generation and steady state enzyme inhibition. In the latter case, numerical simulation predicts that sufficient thrombin to produce a solid clot would be generated in approximately 2 min. Empirical data from the synthetic plasma suggest clotting times of 3-5 min, which are similar to that observed in contact pathway-inhibited whole blood (4.3 min) initiated with the same concentrations of factors IXa and Xa and thrombin. Numerical simulations performed with the concentrations of two of the enzymes held constant and one varied suggest that the presence of any pair of enzymes is sufficient to yield rapid clot formation. Modeling of states (numerical simulation and whole blood) where only one circulating protease is present at steady state concentration shows significant thrombin generation only for factor IXa. The addition of factor Xa and thrombin has little effect (if any) on thrombin generation induced by factor IXa alone. These data indicate that 1) concentrations of active coagulation enzymes circulating in vivo are significantly lower than can be predicted from the concentrations of their AP, and 2) expected trace amounts of factor IXa can trigger thrombin generation in the absence of tissue factor.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M400531200DOI Listing

Publication Analysis

Top Keywords

factor ixa
20
thrombin generation
16
factor
8
trace amounts
8
thrombin
8
factor thrombin
8
steady state
8
numerical simulation
8
ixa
6
concentrations
6

Similar Publications

Article Synopsis
  • Dysregulation of BDNF is linked to Alzheimer's disease, and this study examined its expression in the hippocampus of 5xFAD mice, focusing on sex and age.
  • At 3 months, female wild-type mice had higher Bdnf mRNA levels than males, but this difference disappeared in female 5xFAD mice.
  • By 6 months, female 5xFAD mice showed a significant decrease in full-length TrkB receptor mRNA while increased levels of truncated TrkB were observed in both sexes, highlighting potential disruptions in BDNF signaling due to Alzheimer's.
  • The research indicates that certain Bdnf splice variants are maintained at higher levels in young female mice but may be affected by Alzheimer's
View Article and Find Full Text PDF

Discovery of a new lead molecule to develop a novel class of human factor XIIa inhibitors.

J Thromb Thrombolysis

December 2024

Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.

Article Synopsis
  • FXIIa is a plasma protease in the contact activation pathway, and inhibiting it could lead to safer anticoagulation treatments without the bleeding risks of current options.!* -
  • The study tested an amidine-containing molecule (inhibitor 1) and found it primarily inhibits human FXIIa with an IC value of ~30 µM, while showing variable selectivity against other factors involved in blood coagulation.!* -
  • Inhibitor 1 effectively prolongs clotting time in plasma without significant cytotoxicity, making it a promising candidate for further development as a safer anticoagulant for thromboembolic diseases.!*
View Article and Find Full Text PDF

Thrombotic disorders pose a global health threat, emphasizing the urgent need for effective management strategies. This study explores the potential of bioactive compounds derived from guava leaves in inhibiting coagulation factor IXa (CFIXa) using methods. Using GC-MS, bioactive compounds extracted from guava leaf through ethanol maceration were identified.

View Article and Find Full Text PDF

Coagulation factor IX plays a central role in hemostasis through interaction with factor VIIIa to form a factor X-activating complex at the site of injury. The absence of factor IX activity results in the bleeding disorder hemophilia B. This absence of activity can arise either from a lack of circulating factor IX protein or mutations that decrease the activity of factor IX.

View Article and Find Full Text PDF

Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!