The lung maintains an elevated level of glutathione (GSH) in epithelial lining fluid (ELF) compared to serum. The mechanism(s) by which the lung maintains high levels of ELF GSH and factors that modulate them are largely unexplored. We hypothesized that lung cystic fibrosis transmembrane conductance regulator protein (CFTR) modulates GSH efflux in response to extracellular stress, which occurs with lung infections. Mice were challenged intratracheally with Pseudomonas aeruginosa, and on the third day of infection bronchoalveolar lavage fluid was obtained and analyzed for cytokines and antioxidants. Lung tissue antioxidants and enzyme activities were also assessed. P. aeruginosa lung infection increased levels of inflammatory cytokines and neutrophils in the ELF. This corresponded with a marked threefold increase in GSH and a twofold increase in urate levels in the ELF of P. aeruginosa-infected wild-type mice. A twofold increase in urate levels was also observed among lung tissue antioxidants of P. aeruginosa-infected wild-type mice. There were no changes in markers of lung oxidative stress associated with the P. aeruginosa lung infection. In contrast with wild-type mice, the CFTR knockout mice lacked a significant increase in ELF GSH when challenged with P. aeruginosa, and this correlated with a decrease in the ratio of reduced to oxidized GSH in the ELF, a marker of oxidative stress. These data would suggest that the lung adapts to infectious agents with elevated ELF GSH and urate. Individuals with lung diseases associated with altered antioxidant transport, such as cystic fibrosis, might lack the ability to adapt to the infection and present with a more severe inflammatory response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC375208PMC
http://dx.doi.org/10.1128/IAI.72.4.2045-2051.2004DOI Listing

Publication Analysis

Top Keywords

cystic fibrosis
12
elf gsh
12
wild-type mice
12
lung
11
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
regulator protein
8
lung maintains
8
levels elf
8

Similar Publications

Comparison of MIC Test Strip and reference broth microdilution method for amphotericin B and azoles susceptibility testing on wild type and non-wild type Aspergillus species.

Med Mycol

January 2025

Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina.

This study was performed to evaluate whether the MIC Test Strip (MTS) quantitative assay for determining the minimum inhibitory concentration (MIC) correlated with the CLSI reference broth microdilution method (BMD) for antifungal susceptibility testing of wild-type and non-wild-type Aspergillus species isolated from cystic fibrosis patients against antifungal agents known to be usually effective against Aspergillus spp. This study was performed to assist in the decision-making process for possible deployment of the MTS assay for antimicrobial susceptibility testing of Aspergillus species into regional public health laboratories of Mycology due to difficulties in equipping the reference BMD methods in a laboratory routine. For this purpose, a set of 40 phenotypically diverse isolates (27 wild-type, 9 non-wild-type, and 4 species with reduced susceptibility to azoles and amphotericin B (AMB)) collected from clinical samples were tested.

View Article and Find Full Text PDF

Effects of Elexacaftor-Tezacaftor-Ivacaftor on Nasal and Sinus Symptoms in Children With Cystic Fibrosis.

Pediatr Pulmonol

January 2025

Hôpital Femme Mère Enfant, Hospices Civils de Lyon, 59 Boulevard Pinel, Lyon, France.

Background: New CFTR Modulator triple therapy Elexacaftor-Ivacaftor-Tezacaftor (ETI) prove efficacy in pulmonary outcomes. However, its impact on nasal sinus symptoms in children has not been specifically studied. The aim of this study is to evaluate the impact of this therapy on nasal sinus symptomatology in children aged 6-12 years.

View Article and Find Full Text PDF

"It's Like You're Feeding Your Child Twice": Barriers and Facilitators to Human Milk Feeding Children With Cystic Fibrosis.

Pediatr Pulmonol

January 2025

Department of Pediatrics, Division of Pulmonary, Allergy/Immunology, Cystic Fibrosis and Sleep, Emory University, Atlanta, Georgia, USA.

Background: Cystic Fibrosis Foundation guidelines recommend human milk (HM) as the ideal source of nutrition for children with CF (cwCF). Despite known pulmonary and nutritional benefits, fewer cwCF ever receive HM compared to the general population. Early nutrition choices are preference-sensitive, yet little is known about the factors that impede or sustain HM feeding among parents of cwCF.

View Article and Find Full Text PDF

Pf bacteriophages, lysogenic viruses that infect are implicated in the pathogenesis of chronic infections; phage-infected (Pf+) strains are known to predominate in people with cystic fibrosis (pwCF) who are older and have more severe disease. However, the transmission patterns of Pf underlying the progressive dominance of Pf+ strains are unclear. In particular, it is unknown whether phage transmission commonly occurs horizontally between bacteria within the airway via viral particles or if Pf+ bacteria are mostly acquired via new infections.

View Article and Find Full Text PDF

Antibiotics are central to managing airway infections in cystic fibrosis (CF), yet current treatments often fail due to the presence of biofilms, settling down the need for seeking therapies targeting biofilms. This study aimed to investigate the antibiofilm activity of aspartic acid and its potential as an adjuvant to tobramycin against biofilms formed by mucoid and small colony variant (SCV) tobramycin tolerant strain. We assessed the effect of aspartic acid on both surface-attached and suspended biofilms within CF artificial mucus and investigated the synergistic impact of combining it with non-lethal tobramycin concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!