Regulation of Na+ transport by aldosterone: signaling convergence and cross talk between the PI3-K and MAPK1/2 cascades.

Am J Physiol Renal Physiol

Dept. of Chemistry and Biochemistry, Texas State Univ., 601 University Dr., CHEM 216, San Marcos, TX, USA.

Published: June 2004

Cross talk between the phosphatidylinositol 3-kinase (PI3-K) and mitogen-activating protein kinase (MAPK)1/2 signaling cascades in response to aldosterone-induced K-RasA was investigated in renal A6 epithelial cells. In addition, the contribution of these signaling pathways to aldosterone-stimulated Na(+) transport was investigated. Aldosterone increased active K-RasA levels in A6 cells resulting in activation of downstream effectors in both the MAPK1/2 and PI3-K cascades with K-RasA directly interacting with the catalytic p110 subunit of PI3-K in a steroid-dependent manner. Aldosterone-stimulated PI3-K signaling impinged on the MAPK1/2 cascade at the level of Akt-mediated phosphorylation of c-Raf at an established negative regulatory site. Aldosterone also increased Sgk levels as well as stimulated phosphorylation of this kinase in a PI3-K- and K-RasA-dependent manner. Blockade of MAPK1/2 signaling had little effect on Na(+) transport. Conversely, inhibition of PI3-K markedly suppressed transport. Likewise, suppression of K-RasA induction decreased transport. However, Na(+) transport was subsequently stimulated under these conditions with the PLA(2) inhibitor aristolochic acid, an established positive modulator of Na(+) transport, suggesting that K-RasA signaling through PI3-K does not directly affect epithelial sodium channel (ENaC) levels but the activity of this channel. Consistent with this possibility, activity of ENaC reconstituted in Chinese hamster ovary cells was increased by coexpression of constitutively active PI3-K. The current study demonstrates that aldosterone increases Na(+) transport, in part, by stimulating PI3-K signaling and that during aldosterone actions, there is both signaling convergence between the two aldosterone-induced proteins, K-RasA and Sgk, as well as cross talk between the PI3-K and MAPK1/2 cascades with the prior but not latter cascade enhancing ENaC activity.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajprenal.00345.2003DOI Listing

Publication Analysis

Top Keywords

na+ transport
24
cross talk
12
pi3-k
10
transport
8
signaling
8
signaling convergence
8
talk pi3-k
8
pi3-k mapk1/2
8
mapk1/2 cascades
8
mapk1/2 signaling
8

Similar Publications

Unlabelled: are Gram-negative, rod-shaped, entero-invasive foodborne bacteria and are frequently detected in chicken houses and facilities of poultry broiler complexes. The objective of this study was to determine the prevalence, critical entry points, and movement pattern of along different stages of a complex. A total of 1,071 environmental samples were collected from 38 production houses (8 pullet, 10 breeder, and 20 broiler), a hatchery, 6 transport trucks, and a processing plant.

View Article and Find Full Text PDF

Aminobenzoic Acid Covalently Modified Polyoxotungstates Based on {XW} Clusters with Proton Conductivity Property.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Three cases of aminobenzoic acid hybrid polyoxotungstates, Na(HO)[(HPWO) (OCCHNH)]·7HO (), K(HO)[(AsWO)(OCCHNH)]·4HO (), and [(HN(CH)]Na(HO)[(SbWO) (OCCHNH)]·7HO (), were successfully synthesized. This is the first report of the successful assembly of the hexanuclear {XW} (X = HP, As, or Sb) clusters and organic carboxylic acid (para aminobenzoic acid) ligands. All three hybrids feature a common {XW} unit composed of a six-membered {WO} octahedral ring capped by one {XO} trigonal pyramid.

View Article and Find Full Text PDF

Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.

View Article and Find Full Text PDF

The shape of biological matter is central to cell function at different length scales and determines how cellular components recognize, interact and respond to one another. However, their shapes are often transient and hard to reprogramme. Here we construct a synthetic cell model composed of signal-responsive DNA nanorafts, biogenic pores and giant unilamellar vesicles (GUVs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!