Expression of recombinant hemoproteins in Escherichia coli is often limited because a vast majority of the protein produced lacks the heme necessary for function. This is compounded by the fact that standard laboratory strains of E. coli have a limited capacity to withdraw heme from the extracellular environment. We are developing a new tool designed to increase the heme content of our proteins of interest by simply supplementing the expression medium with low concentrations of hemin. This hemoprotein expression (HPEX) system is based on plasmids (pHPEX1-pHPEX3) that encode an outermembrane-bound heme receptor (ChuA) from E. coli O157:H7. This heme receptor, and others like it, confers on the host the ability to more effectively internalize exogenous heme. Transformation of a standard laboratory E. coli protein expression strain (BL-21 [DE3]) with the pHPEX plasmid led to the expression of a new protein with the appropriate molecular weight for ChuA. The receptor was functional as demonstrated by the ability of the transformant to grow on iron-deficient media supplemented with hemin, an ability that the unmodified expression strain lacked. Expression of our proteins of interest, catalase-peroxidases, using this system led to a dramatic and parallel increase in heme content and activity. On a per-heme basis, the spectral and kinetic properties of HPEX-derived catalase-peroxidase were the same as those observed for catalase-peroxidases expressed in standard E. coli-based systems. We suggest that the pHPEX plasmids may be a useful addition to other E. coli expression systems and may help address a broad range of problems in hemoprotein structure and function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pep.2003.12.001 | DOI Listing |
Biotechnol Bioeng
January 2025
Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal.
The insect cell-baculovirus expression vector system (IC-BEVS) has been an asset to produce biologics for over 30 years. With the current trend in biotechnology shifting toward process intensification and integration, developing intensified processes such as continuous production is crucial to hold this platform as a suitable alternative to others. However, the implementation of continuous production has been hindered by the lytic nature of this expression system and the process-detrimental virus passage effect.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
MOE Key Laboratory of Industrial Fermentation Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Background: Hyaluronic acid (HA) is extensively employed in various fields such as medicine, cosmetics, food, etc. The molecular weight (MW) of HA is crucial for its biological functions. Streptococcus zooepidemicus, a prominent HA industrial producer, naturally synthetizes HA with high MW.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
School of Medicine, Shanghai University, Shanghai, 200444, China.
Biochips are widely applied to manipulate the geometrical morphology of stem cells in recent years. Patterned antenna-like pseudopodia are also probed to explore the influence of pseudopodia formation on gene delivery and expression on biochips. However, how the antenna-like pseudopodia affect gene transfection is unsettled and the underlying trafficking mechanism of exogenous genes in engineered single cells is not announced.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, No. 20 Dongda Street, Beijing, 100071, Fengtai District, China.
Human β-defensin (HBD) has been recognized as a promising antimicrobial agent due to its broad-spectrum antimicrobial activity against various pathogens. In our previous work, we engineered a chimeric human β-defensin, designated H4, by fusing human β-defensin 3 and human β-defensin 4, resulting in enhanced antimicrobial activity and salt stability. However, the high cost of chemical synthesis due to the relatively large number of amino acids in H4 has limited its applications.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!