Control of bacteria adhesion by cell-wall engineering.

J Am Chem Soc

Shionogi Laboratory of Biomolecular Chemistry, Hokkaido University, Kita 21 Nishi 8, Kita-ku, Sapporo 001-0021, Japan.

Published: March 2004

AI Article Synopsis

Article Abstract

UDP-MurNAc-pentapeptide derivative bacterial cell-wall precursors were synthesized as effective tools for surface display on living bacteria. Lactobacilli were incubated in the ketone-modified precursor-containing medium, and the ketone moiety was displayed on the bacterial surface through cell-wall biosynthesis. Oligomannose was coupled with the ketone moiety on the bacterial surface via a aminooxyl linker, thereby displaying this oligosaccharide on the surface of the bacteria. The increase in the adhesion of the sugar-displaying bacteria onto a concanavalin A-attached film compared to that of native bacteria was confirmed by microscopic observation and surface plasmon resonance measurement. The incorporation of the artificial cell-wall precursors was enhanced when incubated with fosfomycin, an inhibitor of cell-wall precursor biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja039391iDOI Listing

Publication Analysis

Top Keywords

cell-wall precursors
8
ketone moiety
8
bacterial surface
8
cell-wall
5
surface
5
control bacteria
4
bacteria adhesion
4
adhesion cell-wall
4
cell-wall engineering
4
engineering udp-murnac-pentapeptide
4

Similar Publications

The Microenvironment in DCIS and Its Role in Disease Progression.

Adv Exp Med Biol

January 2025

Centre for Tumour Biology, Barts Cancer Institute, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London, UK.

Ductal carcinoma in situ (DCIS) accounts for ~20% of all breast cancer diagnoses but whilst known to be a precursor of invasive breast cancer (IBC), evidence suggests only one in six patients will ever progress. A key challenge is to distinguish between those lesions that will progress and those that will remain indolent. Molecular analyses of neoplastic epithelial cells have not identified consistent differences between lesions that progressed and those that did not, and this has focused attention on the tumour microenvironment (ME).

View Article and Find Full Text PDF

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Excessive copper induces lignin biosynthesis in the leaves and roots of two citrus species: Physiological, metabolomic and anatomical aspects.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:

Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.

View Article and Find Full Text PDF

Pyrophosphate-stabilized amorphous calcium carbonates (PyACC) are promising compounds for bone repair due to their ability to release calcium, carbonate, and phosphate ions following pyrophosphate hydrolysis. However, shaping these metastable and brittle materials using conventional methods remains a challenge, especially in the form of macroporous scaffolds, yet essential to promote cell colonization. To overcome these limitations, this article describes for the first time the design and multiscale characterization of freeze-cast alginate (Alg)-PyACC nanocomposite scaffolds.

View Article and Find Full Text PDF

The rising prevalence of multidrug-resistant (MDR) Gram-positive bacteria threatens the effectiveness of current antibiotic therapies. However, the development of new antibiotics has stagnated in recent years, highlighted the critical need for the discovery of innovative antimicrobial agents. This study aims to evaluate the antibacterial activity of naphthoquinones derived from Arnebia euchroma (Royle) Johnst (ADNs) and elucidate their underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!