The effects of microwaves on airborne microorganisms.

J Microw Power Electromagn Energy

Department of Electrical and Computer Engineering, University of South Alabama, 307 North University Blvd., Mobile, Alabama, USA.

Published: May 2004

AI Article Synopsis

Article Abstract

This paper reports preliminary results of simple experiments carried out to study the effects of microwave irradiation at 2.45 GHz on fungi, yeast and bacteria of the type encountered in food processing plants or in enclosures containing individuals infected with tuberculosis mycobacterium (TB). The results are sufficiently encouraging to justify further multivariable experiments particularly with air circulation schemes in which the air can be sterilized in a circular cylindrical microwave cavity operating at a higher order mode.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08327823.2001.11688447DOI Listing

Publication Analysis

Top Keywords

effects microwaves
4
microwaves airborne
4
airborne microorganisms
4
microorganisms paper
4
paper reports
4
reports preliminary
4
preliminary simple
4
simple experiments
4
experiments carried
4
carried study
4

Similar Publications

A multi-band high-sensitivity microwave sensor for simultaneous detection of two dielectric materials.

Rev Sci Instrum

January 2025

The State Key Laboratory of Complex Electromagnetic Environment Effects on Electronic and Information System, Luoyang 471004, China.

A multi-band high-sensitivity microwave sensor is reported. The two resonance units are based on complementary square spiral resonators (CSSRs) and produce four measurement bands through parasitic resonances. The four frequency bands are 2.

View Article and Find Full Text PDF

Alternatives to nonbiodegradable synthetic plastics for food packaging include films made from biopolymers that are nontoxic and environment-friendly. In this study, carnauba wax (CW) and nitrogen-doped graphene quantum dots (NG) as functional additives were utilized in the production of pectin/gelatin (PG) film. NG was synthesized through the microwave method, using acetic acid as the carbon source, giving size, and zeta potential of 1.

View Article and Find Full Text PDF

Effect of Drying and Microwave-Assisted Extraction Parameters on Variety Koseret Essential Oil Yield.

Food Technol Biotechnol

December 2024

Hanbit Flavor and Fragrance Co. Ltd., 88 Sinwon-ro, Youngtong-gu, 101-1511 Gyeonggi-do, South Korea.

Research Background: Green extraction technologies, such as microwave-assisted extraction, have been used to replace conventional methods of isolating essential oils from plants. In this study, the essential oil was extracted from the variety koseret using the advanced method of microwave-assisted hydrodistillation. The main objective was to investigate the effect of irradiation time, microwave power and particle size on the yield and chemical composition of the essential oil extracted from leaves dried in an oven at 50 °C and room temperature.

View Article and Find Full Text PDF

Microwave-Assisted Synthesized ZnO@APTES Quantum Dots Exhibits Potent Antibacterial Efficacy Against Methicillin-Resistant Without Inducing Resistance.

Int J Nanomedicine

January 2025

Key Laboratory of Livestock Infectious Diseases, Ministry of Education, and Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.

Background: Antibiotic resistance of many bacteria, including Methicillin-resistant (MRSA), has become a major threat to global health. Zinc Oxide Quantum dots (ZnO-QDs) show good antibacterial activity, but most of them are insoluble in water, limiting their application range, and there is a lack of research on drug resistance inducement.

Methods: The water-soluble zinc oxide quantum dots modified by APTES (ZnO@APTES QDs) were prepared by a microwave assisted synthesis.

View Article and Find Full Text PDF

Morphology control of electrically conductive metal-organic frameworks (EC-MOFs) can be a powerful means to tune their surface area and carrier transport pathways, particularly beneficial for energy conversion and storage. However, controlling EC-MOFs' morphology is underexplored due to the uncontrollable crystal nucleation and rapid growth kinetics. This work introduces a microwave-assisted strategy to readily synthesize Cu-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) with controlled morphologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!