Physical association between the transcription factor GATA-1 and the cofactor, Friend of GATA-1 (FOG-1), is essential for the differentiation of two blood cell types, erythroid cells and megakaryocytes. However, little is known regarding the mechanisms that modulate their interaction within cells. In the present study, we have identified TACC3 as a FOG-1-interacting protein. Transforming acidic coiled-coil protein 3 (TACC3), a protein that is highly expressed in hematopoietic cells, has been reported to have a critical role in the expansion of immature hematopoietic progenitors. We show that TACC3 affects FOG-1 nuclear localization, altering the interaction between GATA-1 and FOG-1. However, GATA-1 competes with TACC3 in the interaction with FOG-1. We observe that high levels of TACC3 inhibit the function of FOG-1 as a transcriptional cofactor of GATA-1. Furthermore, forced expression of TACC3 to levels similar to those found in progenitor cells delays terminal maturation of MEL and G1ER cells, two cell models of erythroid cell development. We suggest a role for TACC3 in regulating the cellular distribution of FOG-1 and thus the direct interaction of GATA-1 and FOG-1 as a mechanism to control the transition between expansion of multipotential progenitor cell populations and final stages of erythroid maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M313987200 | DOI Listing |
Blood Sci
July 2023
Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China.
Matrix remodeling is a critical process in hematopoiesis. The biology of MXRA7, as a matrix remodeling associated gene, has still not been reported in hematopoietic process. Public databases showed that MXRA7 expressed in hematopoietic stem cells, suggesting that it may be involved in hematopoiesis.
View Article and Find Full Text PDFTransfus Apher Sci
December 2022
Department of Immunology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine (IBTO), Tehran, Iran. Electronic address:
Umbilical cord blood (UCB) has improved into an attractive and alternative source of allogeneic hematopoietic stem cells (all-HSCs) in clinics and, research for three decades. Recently, it has been shown that the limited cell dose of, this valuable source can be enhanced by the ex vivo expansion of cells in many, ways. We evaluated the expression of the Gata transcription factors family and FOG-1, in expanded and differentiated cord blood-derived CD34 + hematopoietic stem cells to, megakaryocytes lineage.
View Article and Find Full Text PDFPhytomedicine
July 2022
Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China; Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China. Electronic address:
Background: Thrombocytopenia (TP) remains a challenge in clinical hematology. TP may have serious consequences, such as recurrent skin and mucosal bleeding and increased risk of intracranial and internal organ hemorrhage. However, effective and safe therapeutic drugs for the long-term management of TP are still lacking.
View Article and Find Full Text PDFNucleic Acids Res
September 2021
Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA.
The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1.
View Article and Find Full Text PDFCell Commun Signal
August 2021
State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, People's Republic of China.
Background: The positive transcription elongation factor b (P-TEFb) kinase activity is involved in the process of transcription. Cyclin-dependent kinase 9 (CDK9), a core component of P-TEFb, regulates the process of transcription elongation, which is associated with differentiation and apoptosis in many cancer types. Wogonin, a natural CDK9 inhibitor isolated from Scutellaria baicalensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!