The Alcadeins (Alcs)/calsyntenins and the amyloid beta-protein precursor (APP) associate with each other in the brain by binding via their cytoplasmic domains to X11L (the X11-like protein). We previously reported that the formation of this APP-X11L-Alc tripartite complex suppresses the metabolic cleavages of APP. We show here that the metabolism of the Alcs markedly resembles that of APP. The Alcs are subjected to a primary cleavage event that releases their extracellular domain. Alcs then undergo a secondary presenilin-dependent gamma-cleavage that leads to the secretion of the amyloid beta-protein-like peptide and the liberation of an intracellular domain fragment (AlcICD). However, when Alc is in the tripartite complex, it escapes from these cleavages, as does APP. We also found that AlcICD suppressed the FE65-dependent gene transactivation activity of the APP intracellular domain fragment, probably because AlcICD competes with the APP intracellular domain fragment for binding to FE65. We propose that the Alcs and APP are coordinately metabolized in neurons and that their cleaved cytoplasmic fragments are reciprocally involved in the regulation of FE65-dependent gene transactivation. Any imbalance in the metabolism of Alcs and APP may influence the FE65-dependent gene transactivation, which together with increased secretion of amyloid beta-protein may contribute to neural disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M401925200DOI Listing

Publication Analysis

Top Keywords

fe65-dependent gene
16
gene transactivation
16
amyloid beta-protein
12
intracellular domain
12
domain fragment
12
beta-protein precursor
8
app
8
tripartite complex
8
cleavages app
8
metabolism alcs
8

Similar Publications

Fe65 Is Phosphorylated on Ser289 after UV-Induced DNA Damage.

PLoS One

July 2017

NIHR Health Protection Research Unit for Chemical & Radiation Threats & Hazards, Wolfson Building, Newcastle University, Newcastle upon Tyne, NE2 4AA, United Kingdom.

Fe65 undergoes a phosphatase-sensitive gel mobility shift after DNA damage, consistent with protein phosphorylation. A recent study identified Ser228 as a specific site of phosphorylation, targeted by the ATM and ATR protein kinases, with phosphorylation inhibiting the Fe65-dependent transcriptional activity of the amyloid precursor protein (APP). The direct binding of Fe65 to APP not only regulates target gene expression, but also contributes to secretase-mediated processing of APP, producing cytoactive proteolytic fragments including the APP intracellular domain (AICD) and cytotoxic amyloid β (Aβ) peptides.

View Article and Find Full Text PDF

Hirano bodies are cytoplasmic inclusions predominantly found in the central nervous system associated with various conditions including aging and Alzheimer's disease (AD). Since most studies of Hirano bodies have been performed in post-mortem samples, the physiological roles of Hirano bodies have not been investigated. Astrocytoma H4 cells were employed to test the hypothesis that Hirano bodies interact with and modulate signaling by the C-terminal fragment of amyloid-β precursor protein (AICD).

View Article and Find Full Text PDF

The release of amyloid precursor protein (APP) intracellular domain (AICD) may be triggered by extracellular cues through gamma-secretase-dependent cleavage. AICD binds to Fe65, which may have a role in AICD-dependent signalling; however, the functional ligand has not been characterized. In this study, we have identified TAG1 as a functional ligand of APP.

View Article and Find Full Text PDF

Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD.

Genes Cells

June 2006

Laboratory of Neuroscience, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Kita-ku, Sapporo 060-0812, Japan.

Consecutive cleavages of Alzheimer's amyloid beta-protein precursor (APP) generate intracellular domain fragment (AICD). Interaction of APP and/or AICD with the adaptor protein FE65 is thought to modulate the metabolism of APP and the function of AICD. Phosphorylation or amino acid substitution of APP and AICD at threonine 668 (Thr668) suppresses their association with FE65.

View Article and Find Full Text PDF

Cleavage of amyloid-beta precursor protein (APP) by membrane-type matrix metalloproteinases.

J Biochem

March 2006

Department of Molecular Virology and Oncology, Cancer Research Institute, Kanazawa University, Takara-machi, Ishikawa.

Amyloid-beta precursor protein (APP) was identified on expression cloning from a human placenta cDNA library as a gene product that modulates the activity of membrane-type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with APP in HEK293T cells induced cleavage and shedding of the APP ectodomain when co-expressed with APP adaptor protein Fe65. Among the MT-MMPs tested, MT3-MMP and MT5-MMP also caused efficient APP shedding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!