Breast cancer cell lines that express the nuclear peroxisome proliferator-activated receptor gamma (PPAR gamma) can be prompted to undergo growth arrest and differentiation when treated with synthetic PPAR gamma ligands. To evaluate the therapeutic potential of increased PPAR gamma signaling in vivo, we generated transgenic mice that express a constitutively active form of PPAR gamma in mammary gland. These mice are indistinguishable from their wild-type littermates. However, when bred to a transgenic strain prone to mammary gland cancer, bigenic animals develop tumors with greatly accelerated kinetics. Surprisingly, in spite of their more malignant nature, bigenic tumors are more secretory and differentiated. The molecular basis of this tumor-promoting effect may be an increase in Wnt signaling, as ligand activation of PPAR gamma potentiates Wnt function in an in vivo model of this pathway. These results suggest that once an initiating event has taken place, increased PPAR gamma signaling serves as a tumor promoter in the mammary gland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC374235PMC
http://dx.doi.org/10.1101/gad.1167804DOI Listing

Publication Analysis

Top Keywords

ppar gamma
28
mammary gland
16
gamma signaling
12
increased ppar
8
ppar
7
gamma
7
signaling
4
signaling exacerbates
4
mammary
4
exacerbates mammary
4

Similar Publications

In 2019, diabetes mellitus affected 9.3% of the global population and accounted for one in nine adult deaths. Plant-based antioxidants neutralize harmful free radicals, mitigate oxidative stress, and significantly prevent diabetes and its complications.

View Article and Find Full Text PDF

Ghrelin Promotes Lipid Uptake into White Adipose Tissue via Endothelial Growth Hormone Secretagogue-Receptor in Mice.

Nutrients

December 2024

Division of Nephrology, Endocrinology and Metabolism, Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan.

: Endothelial peroxisome proliferator-activated receptor gamma (PPARγ) regulates adipose tissue by facilitating lipid uptake into white adipocytes, but the role of endothelial lipid transport in systemic energy balance remains unclear. Ghrelin conveys nutritional information through the central nervous system and increases adiposity, while deficiency in its receptor, growth hormone secretagogue-receptor (GHSR), suppresses adiposity on a high-fat diet. This study aims to examine the effect of ghrelin/GHSR signaling in the endothelium on lipid metabolism.

View Article and Find Full Text PDF

: Fructus (AOF) is a medicinal and edible resource that holds potential to ameliorate hyperuricemia (HUA), yet its mechanism of action warrants further investigation. : We performed network pharmacology, molecular docking, molecular dynamics simulation, and in vitro experiments to investigate the potential action and mechanism of AOF against HUA. : The results indicate that 48 potential anti-HUA targets for 4 components derived from AOF were excavated and predicted through public databases.

View Article and Find Full Text PDF

Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Garlic ( L.) is one of the oldest known useful plants, valued for thousands of years. This plant contains many biologically active compounds, including polyphenols, sterols, cysteine-sulfoxides, carbohydrates, proteins, and amino acids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!