AI Article Synopsis

  • SERCA2a protein levels are higher in transgenic (TG) rats, leading to improved myocardial function initially after myocardial infarction (MI), but they experience a higher acute mortality rate compared to wild-type (WT) rats.
  • Despite the increased early mortality and risk of arrhythmias in TG rats, their heart function remains better for one month post-MI, although this improvement diminishes by three months.
  • Ultimately, while SERCA2a overexpression offers transient benefits in heart function, it does not prevent long-term complications like left ventricular remodeling and failure, and it actually increases the risk of early death from MI, which lidocaine can help manage.

Article Abstract

Background: Heart failure often complicates myocardial infarction (MI), and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA2a) is underexpressed in the failing myocardium. We examined the effect of preexisting cardiac SERCA2a protein overexpression on rat survival and left ventricular (LV) remodeling after MI.

Methods And Results: Baseline myocardial SERCA2a expression was 37% higher in transgenic (TG) rats than in their wild-type (WT) controls, consistent with enhanced myocardial function. The mortality rate of TG rats during the 24 hours after surgical MI was higher than that of WT rats (71% versus 35%, P<0.001), associated with a higher frequency of ventricular arrhythmias, and was normalized by lidocaine treatment. The increased acute-phase mortality in TG rats was not accompanied by increased 6-month mortality. Function of the noninfarcted myocardium, as assessed by tissue Doppler imaging, was higher in TG rats than in WT rats for up to 1 month after MI, a beneficial effect no longer observed at 3 months. LV remodeling and global function were similar in TG and WT rats. No difference in papillary muscle function was found at 6 months.

Conclusions: Constitutive cardiac SERCA2a overexpression has a transient beneficial effect on remote myocardium function in rat MI, with no improvement in LV global function or prevention of LV remodeling and failure. This benefit is associated with a higher risk of acute mortality, which is prevented by lidocaine treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.CIR.0000124230.60028.42DOI Listing

Publication Analysis

Top Keywords

sarcoplasmic/endoplasmic reticulum
8
reticulum ca2+-atpase
8
myocardial infarction
8
myocardial
5
constitutive cardiac
4
cardiac overexpression
4
overexpression sarcoplasmic/endoplasmic
4
ca2+-atpase delays
4
delays myocardial
4
myocardial failure
4

Similar Publications

This study explored the vasodilatory mechanisms of the sodium-glucose cotransporter-2 inhibitor remogliflozin using femoral arteries of rabbits. Remogliflozin dilated femoral arterial rings pre-contracted with phenylephrine in a concentration-dependent manner. Pretreatment with the Ca-sensitive K channel inhibitor (paxilline), the ATP-sensitive K channel inhibitor (glibenclamide), or the inwardly rectifying K channel inhibitor (Ba) did not alter the vasodilatory effect.

View Article and Find Full Text PDF

Cholinergic tone is elevated in obstructive lung conditions such as COPD and asthma, but the cellular mechanisms underlying cholinergic contractions of airway smooth muscle (ASM) are still unclear. Some studies report an important role for L-type Ca channels (LTCC) and Ano1 Ca-activated Cl™ channels (CACC) in these responses, but others dispute their importance. Cholinergic contractions of ASM involve activation of M3Rs, however stimulation of M2Rs exerts a profound hypersensitisation of these responses.

View Article and Find Full Text PDF

Injured or atrophied adult skeletal muscles are regenerated through terminal differentiation of satellite cells to form multinucleated muscle fibers. Transplantation of satellite cells or cultured myoblasts has been used to improve skeletal muscle regeneration. Some of the limitations observed result from the limited number of available satellite cells that can be harvested and the efficiency of fusion of cultured myoblasts with mature muscle fibers (i.

View Article and Find Full Text PDF

Urolithin A Protects Hepatocytes from Palmitic Acid-Induced ER Stress by Regulating Calcium Homeostasis in the MAM.

Biomolecules

November 2024

Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.

An ellagitannin-derived metabolite, Urolithin A (UA), has emerged as a potential therapeutic agent for metabolic disorders due to its antioxidant, anti-inflammatory, and mitochondrial function-improving properties, but its efficacy in protecting against ER stress remains underexplored. The endoplasmic reticulum (ER) is a cellular organelle involved in protein folding, lipid synthesis, and calcium regulation. Perturbations in these functions can lead to ER stress, which contributes to the development and progression of metabolic disorders such as metabolic-associated fatty liver disease (MAFLD).

View Article and Find Full Text PDF

Deep phenotyping the right ventricle (RV) is essential for understanding the mechanisms of adaptive and maladaptive RV responses to pulmonary hypertension (PH). In this study, feature selection coupled with machine learning classification/ranking of specific cardiac magnetic resonance imaging (MRI) features from cine-MRI, flow-sensitized, and extracellular-volume techniques were used to assess RV remodelling in monocrotaline (MCT) and Sugen hypoxia (SuHx) PH rats. Early physiological changes associated with RV adaptation were detected along with prediction of RV maladaptive outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!