A high performance k-NN approach using binary neural networks.

Neural Netw

Advanced Computer Architecture Group, Department of Computer Science, University of York, Heslington, York YO10 5DD, UK.

Published: April 2004

This paper evaluates a novel k-nearest neighbour (k-NN) classifier built from binary neural networks. The binary neural approach uses robust encoding to map standard ordinal, categorical and numeric data sets onto a binary neural network. The binary neural network uses high speed pattern matching to recall a candidate set of matching records, which are then processed by a conventional k-NN approach to determine the k-best matches. We compare various configurations of the binary approach to a conventional approach for memory overheads, training speed, retrieval speed and retrieval accuracy. We demonstrate the superior performance with respect to speed and memory requirements of the binary approach compared to the standard approach and we pinpoint the optimal configurations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2003.11.008DOI Listing

Publication Analysis

Top Keywords

binary neural
20
k-nn approach
8
neural networks
8
neural network
8
binary approach
8
speed retrieval
8
approach
7
binary
7
neural
5
high performance
4

Similar Publications

Life-time of the buildings is generally challenged by the act of nature. In-spite of the fact that the constructions provide minimum guarantee on quality and durability, certain mismatch in the composition of the materials, stress on the building, and chemical or physical imbalance of the materials, lead to surface crack. Cracks are also generated due to the shuffle of climatic conditions, which leads to the contraction and expansion of the building surfaces, and other damages.

View Article and Find Full Text PDF

Polariton lattices as binarized neuromorphic networks.

Light Sci Appl

January 2025

Spin-Optics laboratory, St. Petersburg State University, St. Petersburg, 198504, Russia.

We introduce a novel neuromorphic network architecture based on a lattice of exciton-polariton condensates, intricately interconnected and energized through nonresonant optical pumping. The network employs a binary framework, where each neuron, facilitated by the spatial coherence of pairwise coupled condensates, performs binary operations. This coherence, emerging from the ballistic propagation of polaritons, ensures efficient, network-wide communication.

View Article and Find Full Text PDF

Artificial neural networks (ANNs) can help camera-based remote photoplethysmography (rPPG) in measuring cardiac activity and physiological signals from facial videos, such as pulse wave, heart rate and respiration rate with better accuracy. However, most existing ANN-based methods require substantial computing resources, which poses challenges for effective deployment on mobile devices. Spiking neural networks (SNNs), on the other hand, hold immense potential for energy-efficient deep learning owing to their binary and event-driven architecture.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is a heterogeneous autoimmune-mediated disorder affecting the central nervous system, commonly manifesting as fatigue and progressive limb impairment. This can significantly impact quality of life due to weakness or paralysis in the upper and lower limbs. A Brain-Computer Interface (BCI) aims to restore quality of life through control of an external device, such as a wheelchair.

View Article and Find Full Text PDF

VirDetect-AI: a residual and convolutional neural network-based metagenomic tool for eukaryotic viral protein identification.

Brief Bioinform

November 2024

Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México.

This study addresses the challenging task of identifying viruses within metagenomic data, which encompasses a broad array of biological samples, including animal reservoirs, environmental sources, and the human body. Traditional methods for virus identification often face limitations due to the diversity and rapid evolution of viral genomes. In response, recent efforts have focused on leveraging artificial intelligence (AI) techniques to enhance accuracy and efficiency in virus detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!