In this paper, we propose a new learning framework for motor control. This framework consists of two components: reinforcement learning and via-point representation. In the field of motor control, conventional reinforcement learning has been used to acquire control sequences such as cart-pole or stand-up robot control. Recently, researchers have become interested in hierarchical architecture, such as multiple levels, and multiple temporal and spatial scales. Our new framework contains two levels of hierarchical architecture. The higher level is implemented using via-point representation, which corresponds to macro-actions or multiple time scales. The lower level is implemented using a trajectory generator that produces primitive actions. Our framework can modify the ongoing movement by means of temporally localized via-points and trajectory generation. Successful results are obtained in computer simulation of the cart-pole swing up task.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2003.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!