Nonsteroidal anti-inflammatory drugs are used extensively in clinical medicine. In spite of their therapeutic utility, however, they are known to cause significant gastrointestinal and renal toxicities, circumstances that limit their use. The side effects produced in these organs have been attributed mainly to the inhibitory effect of these drugs on the activity of cyclooxygenase, a key enzyme in prostaglandin synthesis. In addition to this, in the small intestine it is known that reactive oxygen species also contribute to the enteropathy seen in response to these drugs. In the kidney, however, there is little information whether other mechanisms contribute to the renal toxicity. This study was designed to look at the possible biochemical mechanisms involved in indomethacin-induced renal damage. Rats fasted overnight were dosed with indomethacin (20 mg/kg) by gavage and sacrificed 24 hr later. Histology of the kidney showed abnormalities in the mitochondria in the proximal tubules. Evidence of oxidative stress was found in the kidney associated with mitochondrial dysfunction and neutrophil infiltration. The lipid composition in the mitochondria was also altered. Such effects were abolished by the prior administration of arginine, a donor of nitric oxide. This study, thus, suggests that one of the mechanisms by which nonsteroidal anti-inflammatory drugs induce renal damage is through oxygen free radicals possibly generated by activated neutrophils and mitochondrial dysfunction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2003.09.023 | DOI Listing |
J Agric Food Chem
January 2025
College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.
View Article and Find Full Text PDFSci Rep
January 2025
Renal Division, Department of Medicine, Universidade Federal de São Paulo, Rua Pedro de Toledo, 781, São Paulo, SP, 04039-032, Brazil.
Partial stenosis of the renal artery causes renovascular hypertension (RVH) and is accompanied by chronic renal ischemia, resulting in irreversible kidney damage. Revascularization constitutes the most efficient therapy for normalizing blood pressure (BP) and has significant benefits for renal function; however, the tissue damage caused by chronic hypoxia is not fully reversed. Mesenchymal stem cells (MSCs) have produced discrete results in minimizing RVH and renal tissue and functional improvements since the obstruction persists.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, West China School of Public Health, Med-X center of materials, Sichuan University, Chengdu, Sichuan, 610065, China.
Chronic kidney disease (CKD) ultimately causes renal fibrosis and end-stage renal disease, thus seriously threatens human health. However, current medications for CKD and fibrosis are inefficient, which is often due to poor targeting capability to renal tubule. In this study, we discover that biomimetic high-density lipoprotein (bHDL) lipid nanoparticles possess excellent targeting ability to injured tubular epithelial cells by kidney injury molecule-1(KIM-1) mediated internalization.
View Article and Find Full Text PDFAngiotensin II (Ang II) is the most active peptide hormone produced by the renin-angiotensin system (RAS). Genetic deletion of genes that ultimately restrict Ang II formation has been shown to result in marked anemia in mice. In this study, adult mice with a genetic deletion of the RAS precursor protein angiotensinogen (Agt-KO) were used.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!