Depletion of fucose from human IgG1 oligosaccharide improves its affinity for Fcgamma receptor IIIa (FcgammaRIIIa). This is the first case where a glycoform modification is shown to improve glycoprotein affinity for the receptors without carbohydrate-binding capacity, suggesting a novel glyco-engineering strategy to improve ligand-receptor binding. To address the mechanisms of affinity improvement by the fucose depletion, we used isothermal titration calorimetry (ITC) and biosensor analysis with surface plasmon resonance. ITC demonstrated that IgG1-FcgammaRIIIa binding was driven by favorable binding enthalpy (DeltaH) but opposed by unfavorable binding entropy change (DeltaS). Fucose depletion from IgG1 enhanced the favorable DeltaH, leading to the increase in the binding constant of IgG1 for the receptor by a factor of 20-30. The increase in the affinity was mainly attributed to an enhanced association rate. A triple amino acid substitution in IgG1, S298A/E333A/K334A, is also known to improve IgG1 affinity for FcgammaRIIIa. ITC demonstrated that the amino acid substitution attenuated the unfavorable DeltaS resulting in a three- to fourfold increase in the binding constant. The affinity enhancement by the amino acid substitution was due to a reduced dissociation rate. These results indicate that the mechanism of affinity improvement by the fucose depletion is quite distinct from that by the amino acid substitution. Defucosylated IgG1 exhibited higher antibody-dependent cellular cytotoxicity (ADCC) than S298A/E333A/K334A-IgG1, showing a correlation between IgG1 affinity for FcgammaRIIIa and ADCC. We also examined the effect of FcgammaRIIIa polymorphism (Val158/Phe158) on IgG1-FcgammaRIIIa binding. The Phe to Val substitution increased FcgammaRIIIa affinity for IgG1 in an enthalpy-driven manner with the reduced dissociation rate. These results together highlight the distinctive functional improvement of affinity by IgG1 defucosylation and suggest that engineering of non-interfacial monosaccharides can improve glycoprotein affinity for receptors via an enthalpy-driven and association rate-assisted mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2004.01.007DOI Listing

Publication Analysis

Top Keywords

fucose depletion
16
amino acid
16
acid substitution
16
igg1
11
affinity
11
human igg1
8
igg1 oligosaccharide
8
binding
8
binding enthalpy
8
association rate
8

Similar Publications

High-abundance serum glycoproteins as valuable resources for glycopeptide standards.

Carbohydr Polym

January 2025

Laboratory for Disease Glycoproteomics, College of Life Sciences, Northwest University, Xi'an 710069, PR China. Electronic address:

High-abundance serum proteins, mostly modified by N-glycans, are usually depleted from human sera to achieve in-depth analyses of serum proteome and sub-proteomes. In this study, we show that these high-abundance glycoproteins (HAGPs) can be used as valuable standard glycopeptide resources, as long as the structural features of their glycans have been well defined at the glycosite-specific level. By directly analyzing intact glycopeptides enriched from serum, we identified 1322 unique glycopeptides at 48 N-glycosites from the top 12 HAGPs (19 subclasses).

View Article and Find Full Text PDF

One of the most hostile marine habitats on Earth is the surface of the South Pacific Gyre (SPG), characterized by high solar radiation, extreme nutrient depletion, and low productivity. During the SO-245 "UltraPac" cruise through the center of the ultra-oligotrophic SPG, the marine alphaproteobacterial group AEGEAN169 was detected by fluorescence in situ hybridization at relative abundances up to 6% of the total microbial community in the uppermost water layer, with two distinct populations (Candidatus Nemonibacter and Ca. Indicimonas).

View Article and Find Full Text PDF

Oxytocin Alleviates Colitis and Colitis-Associated Colorectal Tumorigenesis via Noncanonical Fucosylation.

Research (Wash D C)

July 2024

Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.

Article Synopsis
  • Colon cancer rates are on the rise globally, and while it's usually thought to occur without hormone influence, recent studies suggest sex hormones may play a role in its development, particularly in inflammation-related cases.
  • Researchers found that the oxytocin receptor (OXTR) was significantly reduced in the colon of patients with both colitis and colorectal cancer, leading them to create a specific mouse model lacking OXTR to study its effects.
  • Results showed that without OXTR, mice were more prone to colitis and cancer, highlighting the importance of oxytocin in maintaining colon health, and suggesting its potential as a therapeutic option for managing colitis and colorectal cancer.
View Article and Find Full Text PDF

Sepsis is a life-threatening condition with a rising disease burden worldwide. It is a multifactorial disease and is defined as a dysregulated host response to infection. Neutrophils have been shown to be involved in the pathogenesis of sepsis by exacerbating inflammation.

View Article and Find Full Text PDF

Bacteriophage are sophisticated cellular parasites that can not only parasitize bacteria but are increasingly recognized for their direct interactions with mammalian hosts. Phage adherence to mucus is known to mediate enhanced antimicrobial effects in vitro. However, little is known about the therapeutic efficacy of mucus-adherent phages in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!