The protein kinase B (PKB)/mammalian target of rapamycin (mTOR) signaling pathway is thought to play a critical role in the regulation of protein synthesis and skeletal muscle mass. The purpose of the present study was to determine the effects of voluntary wheel running on the PKB/mTOR signaling pathway in muscles from aged mice (20-22 months). The total levels of mTOR were 65% higher in gastrocnemius muscles from aged mice subjected to wheel running compared to aged sedentary mice (p-0.002) PKB phosphorlation on Ser473 was 45% higher in gastrocnemius muscles from aged mice subjected to wheel running compared to aged sedentary mice (p=0.01) The total abundance of PKB was 50% higher in gastrocnemius muscles from wheel running mice compared to aged controls (p=0.005). Three months of wheel running did not alter the total amount of p70 S6K in gastrocnemius muscle. Protein synthesis, as assessed by [(14)C]phenylalanine incorporation into protein was significantly higher in soleus muscles from aged mice subjected to wheel running compared to aged sedentary mice (p-0.001) These findings indicate the aerobic exercise training may attenuate the age-related decline in protein synthesis, a process that appears to be due, in part, to increases in mTOR and PKB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714731 | PMC |
http://dx.doi.org/10.1016/j.exger.2003.12.005 | DOI Listing |
Exp Neurol
January 2025
Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan. Electronic address:
Ischemic stroke results in significant long-term disability and mortality worldwide. Although existing therapies, such as recombinant tissue plasminogen activator and mechanical thrombectomy, have shown promise, their application is limited by stringent conditions. Mesenchymal stem cell (MSC) transplantation, especially using SB623 cells (modified human bone marrow-derived MSCs), has emerged as a promising alternative, promoting neurogenesis and recovery.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou 510080, China. Electronic address:
Acute peripheral vestibular dysfunction is associated with a variety of postural and balance disturbances. Vestibular rehabilitation training (VRT) is widely acknowledged as an effective intervention for promoting vestibular compensation. Nevertheless, the broader implementation of early VRT is hindered by an incomplete understanding of its neurobiological mechanisms.
View Article and Find Full Text PDFDev Psychobiol
January 2025
Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, USA.
Exercise can be leveraged as an important tool to improve neural and psychological health, either on its own or to bolster the efficacy of evidence-based treatment modalities. Research in both humans and animal models shows that positive experiences, such as exercise, promote neuroprotection while, in contrast, aversive experiences, particularly those in early development, are often neurologically and psychologically disruptive. In the current study, we employed a preclinical model to investigate the therapeutic benefits of exercise on gene expression in the brains of adult rats.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran. Electronic address:
Within the aging cortex, amyloid beta peptide (Aβ) is a crucial element of the senile plaques, a hallmark feature often observed in cases of Alzheimer's disease (AD). The UPR (unfolded protein response), a cellular mechanism for protein folding, is switched on by Aβ accumulation. Endoplasmic reticulum (ER) stress has been identified as playing a role in aging and the development of neurodegenerative diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!