Optimization of the optical design for pulsed-laser crossed-beam thermal lens (PLCBTL) spectrometry has been investigated. Experiments have been carried out with large samples as well as for very small samples in a microchannel and using different lens combinations to focus the probe and excitation beams. The results have been interpreted in terms of the influence of the excitation beam size as well as the degree of mode-mismatching of the excitation and probe beams on the optimum sample position and on the amplitude and decay of the photothermal signal. A semi-empirical formula that describes the influence of the sample position with respect to the probe beam waist has been established. We have shown that the optimum signal is inversely proportional to the waist of the excitation beam and is independent of the sample size as long as the size of the excitation beam is smaller than the microchannel. Time-resolved experiments have also shown that when the excitation beam is smaller than the sample, the signal decay depends not only on the size of the excitation beam but also on the mode-mismatching factor. Otherwise, the temporal characteristics are closely related to the size of the microchannel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/S1386-1425(03)00311-1 | DOI Listing |
J Acoust Soc Am
January 2025
Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China.
Beamforming technology using loudspeaker arrays is widely used in sound applications, but current sparse array design methods focus on optimizing a single beam for a single target direction, limiting their applicability to multi-channel sound systems. This paper presents a design method for sparse loudspeaker line arrays to generate wideband frequency-invariant beams in multiple target directions. A model based on tapped delay lines is developed and a two-stage design approach is proposed.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore 639798, Singapore. Electronic address:
Bound states in the continuum (BICs) are notable in photonics for their infinite Q factors. Perturbed BICs, or quasi-BICs (QBICs), have finite but ultra-high Q factors, enabling external coupling. So far, most studies have focused on the momentum-space properties of BICs and QBICs, with few discussions on their properties in real space.
View Article and Find Full Text PDFFabry-Perot (FP) lasers with a cavity length shorten down to 50 µm were investigated. One or two laser mirrors were formed by focused ion beam etching. InGaAs quantum dots of high density were used as the laser active region.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Optical resolution photoacoustic imaging of uneven samples without z-scanning is transformative for the fast analysis and diagnosis of diseases. However, current approaches to elongate the depth of field (DOF) typically imply cumbersome postprocessing procedures, bulky optical element ensembles, or substantial excitation beam side lobes. Metasurface technology allows for the phase modulation of light and the miniaturization of imaging systems to wavelength-size thickness.
View Article and Find Full Text PDFNanoscale Adv
January 2025
School of Electrical Engineering and Computer Science, University of Ottawa Ottawa Ontario K1N 6N5 Canada
Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!