A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. | LitMetric

Salinity alters general metabolic processes and enzymatic activities, causing increased production of reactive oxygen species (ROS). Expression of antioxidant defense genes would, in turn, be triggered to defend the cell against oxidative damage. We report that salt disturbed antioxidant metabolism in maize seedlings, causing detrimental effects on the growth and development of maize plantlets, increased hydrogen peroxide production and altered antioxidant activities and transcripts profiles. Excessive ROS levels were accompanied by increased catalase (CAT) activity in photosynthesizing shoots, along with induction of mRNA accumulation. Increased accumulation of superoxide dismutase (SOD) transcripts was also observed although no significant changes in total SOD enzymatic activity and isozyme profiles were detected. Higher salt concentrations (above 0.25 M NaCl) were highly detrimental to the plants, causing arrested growth and severe wilting, among other effects. Histochemical detection of H(2)O(2) by 3,3-diaminobenzidine (DAB) staining indicated a collapse of the leaf veins, with hydrogen peroxide leaking to neighboring cells. In agreement to these observations, Sod1, Sod2, Sod4, Sod4A, as well as all Cat transcripts were severely inhibited in plants exposed to high salt concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1179/135100004225003888DOI Listing

Publication Analysis

Top Keywords

antioxidant metabolism
8
hydrogen peroxide
8
salt concentrations
8
salt-induced antioxidant
4
metabolism defenses
4
defenses maize
4
maize zea
4
zea mays
4
mays seedlings
4
seedlings salinity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!