Four samples of two commercially available iron brands used as substrate for iron permeable reactive barriers (PRBs) were tested for suitability for remediation of perchloroethylene (PCE), trichloroethylene (TCE), cis-dichloroethylene (cDCE) and vinyl chloride (VC). Kinetic studies indicate that rates of reaction are enhanced for cDCE and VC on Connelly iron (2.8 x 10(-4) to 6.9 x 10(-4) L/m2/hr and 2.0 x 10(-4) to 9.0 x 10(-4) L/m2/hr, for cDCE and VC, respectively) vs. Peerless iron (3.1 x 10(-5) to 4.6 x 10(-5) L/m2/hr and 2.4 x 10(-5) to 4.1 x 10(-5) L/m2/hr, for cDCE and VC, respectively). Carbon isotopic analyses of the residual chlorinated ethylene (CE) during degradation indicate significant fractionation occurs during reductive dechlorination, with, for example, up to 70% enrichment in carbon isotopic values observed when VC is more than 99% degraded. Comparison of fractionation factors (epsilon) indicates significant differences in carbon isotopic fractionation for different iron types and for different CEs. For the lower CEs (cDCE and VC) in particular, both slower reaction rates and larger fractionation are observed for degradation on Peerless vs. Connelly iron. This is the first study to establish a correlation between the rate of abiotic degradation on Fe(0) and the extent of isotopic fractionation, and the first to confirm consistent differences in these two parameters as a function of iron type. The possibility that these differences in kinetics and carbon isotopic fractionation for cDCE and VC are related to differences in branching ratios between competing hydrogenolysis and beta-elimination reactions during reductive dechlorination on the iron surfaces is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1745-6584.2004.tb02673.xDOI Listing

Publication Analysis

Top Keywords

carbon isotopic
20
isotopic fractionation
12
iron
9
iron type
8
kinetics carbon
8
connelly iron
8
10-4 10-4
8
10-4 l/m2/hr
8
l/m2/hr cdce
8
10-5 10-5
8

Similar Publications

Interactions between contaminants and the trophic ecology of two seabirds in a coastal lagoon of the Gulf of California.

Ecotoxicology

January 2025

Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México.

Monitoring the dynamics of contaminants in ecosystems helps understand their potential effects. Seabirds have been used as biomonitors of marine ecosystems for this purpose. However, exposure and vulnerability to pollutants are understudied in tropical species, and the relationships between various pollutants and the trophic ecology of seabirds are poorly understood.

View Article and Find Full Text PDF

Food web architecture and trophic interactions between organisms can be studied using ratios of naturally occurring stable isotopes of carbon (C/C) and nitrogen (N/N). Most studies, however, focused on free-living organisms, but recently, there has been growing interest in understanding trophic interactions of parasites. The crustacean ectoparasite is a well-studied parasite of freshwater teleost fish, which has low host specificity and a cosmopolitan distribution.

View Article and Find Full Text PDF

Deep oil reservoirs are becoming increasingly significant fields of hydrocarbon exploration in recent decades. Hydrothermal fluid flow is deemed as a potentially crucial factor affecting the occurrence of deep oil reservoirs, such as enhancing porosity/permeability of reservoirs, accelerating oil generation and thermal cracking, and modifying organic properties of crude oils. Understanding the interplay between hydrothermal fluids and crude oils would provide useful constraints for reconstructing hydrocarbon accumulation processes and predicting the distribution patterns of crude oils.

View Article and Find Full Text PDF

Visible light-responsive enrofloxacin PEC aptasensor based on CN QDs sensitized BiOBr nanosheets.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, PR China; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address:

Background: The excessive application of enrofloxacin (ENR) results in residues contaminating both food and the environment. Consequently, developing robust analytical methods for the selective detection of ENR is crucial. The photoelectrochemical (PEC) sensor has emerged as a highly sensitive analytical technique that has seen rapid development in recent years.

View Article and Find Full Text PDF

Effects of tire wear particles on freshwater bacterial-fungal community dynamics and subsequent elemental cycles using microcosms.

J Hazard Mater

January 2025

Department of Plankton and Microbial Ecology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Ecological impacts of tire wear particles (TWPs) on microbial communities and biogeochemical cycles in freshwater remain largely unknown. Here, we conducted a microcosm experiment to investigate interactions between the overlying water and sediment without and with TWPs addition in a rural vs. urban lake system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!