Trichoderma species--opportunistic, avirulent plant symbionts.

Nat Rev Microbiol

Departments of Horticultural Sciences and Plant Pathology, Cornell University, Geneva, New York 14456, USA.

Published: January 2004

Trichoderma spp. are free-living fungi that are common in soil and root ecosystems. Recent discoveries show that they are opportunistic, avirulent plant symbionts, as well as being parasites of other fungi. At least some strains establish robust and long-lasting colonizations of root surfaces and penetrate into the epidermis and a few cells below this level. They produce or release a variety of compounds that induce localized or systemic resistance responses, and this explains their lack of pathogenicity to plants. These root-microorganism associations cause substantial changes to the plant proteome and metabolism. Plants are protected from numerous classes of plant pathogen by responses that are similar to systemic acquired resistance and rhizobacteria-induced systemic resistance. Root colonization by Trichoderma spp. also frequently enhances root growth and development, crop productivity, resistance to abiotic stresses and the uptake and use of nutrients.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nrmicro797DOI Listing

Publication Analysis

Top Keywords

avirulent plant
8
plant symbionts
8
trichoderma spp
8
systemic resistance
8
trichoderma species--opportunistic
4
species--opportunistic avirulent
4
plant
4
symbionts trichoderma
4
spp free-living
4
free-living fungi
4

Similar Publications

Plants possess remarkably durable resistance against non-adapted pathogens in nature. However, the molecular mechanisms underlying this resistance remain poorly understood, and it is unclear how the resistance is maintained without coevolution between hosts and the non-adapted pathogens. In this study, we used Phytophthora sojae (Ps), a non-adapted pathogen of N.

View Article and Find Full Text PDF

Wheat production is threatened by multiple fungal pathogens, such as the wheat powdery mildew fungus (Blumeria graminis f. sp. tritici, Bgt).

View Article and Find Full Text PDF

Identification and Genome Sequencing of Novel Virulent Strains of pv. Causing Rice Bacterial Blight in Zhejiang, China.

Pathogens

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MOA of China and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Science, Hangzhou 310000, China.

pv. () is the causative agent of rice bacterial blight (RBB), resulting in substantial harvest losses and posing a challenge to maintaining a stable global supply. In this study, strains isolated from Shaoxing, Quzhou, and Taizhou, where RBB occurred most frequently in Zhejiang Province in 2019, were selected as the subjects of research.

View Article and Find Full Text PDF

Brown planthoppers (BPHs, Stål) are a major threat to rice cultivation in Asia, necessitating the development of pest-resistant varieties for effective management. However, the adaptability of BPHs has resulted in the development of virulent populations, such as biotype Y BPHs, which exhibit significant virulence against the rice variety YHY15 that harbors the resistance gene . The various response mechanisms of BPH populations to resistant rice varieties are critical yet underexplored.

View Article and Find Full Text PDF

Major resistance (R) gene mediated resistance to rice blast fungus Magnaporthe oryzae is often overcome by the fungus due to the occurrences of new races with altered corresponding avirulence (AVR) genes. In this study, blast diseased rice tissue samples were collected from breeding stations and commercial rice fields in Arkansas, Louisiana, and Puerto Rico during 2017-2019 to determine the efficacy of major R genes, Pi-ta, Pik, Pizt, Pi9, and Pi33. A total of 185 blast isolates were isolated from the diseased tissue samples to examine the existence of AVR genes AVR-Pita1, AVR-Pib, AVR-Pik, AVR-Pizt, AVR-Pi9 and ACE1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!