Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
ADAM, 2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine, is a recently described SPECT tracer for exploration of the serotonin transporter. We evaluated its potential to detect abnormalities in serotonergic function in the rat using 1) a model of serotonergic neuron lesion induced with 5,7-dihydroxytryptamine (5,7-DHT), and 2) experimental induction of acute decrease in endogenous brain serotonin levels. Cerebral biodistribution studies of [125I]ADAM were performed in normal conditions, in 5,7-DHT-lesioned rats, and after acute serotonin depletion obtained with p-chlorophenylalanine (pCPA). Around 50% reduction in accumulation of ADAM was observed in the hypothalamus and hippocampus 3 weeks after lesion of serotonergic neurons, whereas a more modest decrease of 15-30% occurred in the thalamus, frontal cortex, and striatum. This demonstrated the ability of the tracer to detect serotonergic neuron loss in vivo. After inducing acute 5-HT depletion with pCPA, we observed an increase in in vivo [125I]ADAM binding in all brain areas studied. The higher in vivo binding of [125I]ADAM in pCPA-treated rats than in controls was mainly due to an increase in specific binding to the SERT, as demonstrated by greatly reduced binding in the presence of a saturating dose of paroxetine. This may indicate in vivo competition between ADAM and 5-HT for binding to the SERT. The present findings thus demonstrate that ADAM is a specific SERT radioligand which can be used for in vivo study of central serotonin systems, and supports its use as a tracer for SPECT studies in human disorders involving dysfunction of serotonergic neurotransmission.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/syn.20012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!