Ferromagnetic semiconductors are believed to be suitable for future spintronics, because both charge and spin degrees of freedom can be manipulated by external stimuli. One of the most important characteristics of ferromagnetic semiconductors is the anomalous Hall effect. This is because the ferromagnetically spin-polarized carrier can be probed and controlled electrically, leading to direct application for electronics. Control of the Curie temperature and magnetization direction by electronic field, and photo-induced ferromagnetism have been performed successfully using the anomalous Hall effect for group III-V ferromagnetic semiconductors. In these cases, the operation temperature was much below room temperature because of the limited Curie temperature of less than 160 K (ref. 6). Here, we report on the anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor, rutile Ti(1-x)Co(x)O(2-delta) (of oxygen deficiency delta). This result manifests the intrinsic nature of ferromagnetism in this compound, and represents the possible realization of transparent semiconductor spintronics devices operable at room temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nmat1099 | DOI Listing |
Nat Mater
January 2025
Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
Machine learning algorithms have proven to be effective for essential quantum computation tasks such as quantum error correction and quantum control. Efficient hardware implementation of these algorithms at cryogenic temperatures is essential. Here we utilize magnetic topological insulators as memristors (termed magnetic topological memristors) and introduce a cryogenic in-memory computing scheme based on the coexistence of a chiral edge state and a topological surface state.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
The quantum anomalous Hall effect (QAHE) with a high Chern number hosts multiple dissipationless chiral edge channels, which is of fundamental interest and promising for applications in spintronics. However, QAHE is currently limited in two-dimensional (2D) ferromagnets with Chern number . Using a tight-binding model, we put forward that Floquet engineering offers a strategy to achieve QAHE in 2D nonmagnets, and, in contrast to generally reported QAHE in 2D ferromagnets, a high-Chern-number is obtained accompanied by the emergence of two chiral edge states.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
College of Sciences, Northeastern University, Shenyang, 110819, China.
In this work, using first-principles calculations, we predict a promising class of two-dimensional ferromagnetic semiconductors, namely Janus PrXY (X ≠ Y = Cl, Br, I) monolayers. Through first-principles calculations, we found that PrXY monolayers have excellent dynamic and thermal stability, and their band structures, influenced by magnetic exchange and spin-orbital coupling, exhibit significant valley polarization. Between and - valleys, the Berry curvature values are opposite to each other, resulting in the anomalous valley Hall effect.
View Article and Find Full Text PDFNature
January 2025
Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.
View Article and Find Full Text PDFNature
January 2025
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
Electrons in topological flat bands can form new topological states driven by correlation effects. The pentalayer rhombohedral graphene/hexagonal boron nitride (hBN) moiré superlattice was shown to host fractional quantum anomalous Hall effect (FQAHE) at approximately 400 mK (ref. ), triggering discussions around the underlying mechanism and role of moiré effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!