Glucose-stimulated proinsulin biosynthesis is regulated mainly at the translational level. This study aims at investigating the possible role of the B-cell K+ content in such a process. In order to increase the islet cells K+ content, rat pancreatic islets exposed to a low D-glucose concentration (e.g., 2.5 mM) were incubated in the presence of 30 or 60 mM K+, as distinct from a control extracellular K+ concentration of 5 mM. Under these conditions, the K+ content of the islets, as judged from the net uptake of 86Rb+ over 60 min incubation, was increased to a level comparable to that otherwise found in the presence of 16.7 mM D-glucose. In the presence of 2.5-4.0 mM D-glucose, the rise in K+ concentration from 5 to 30 and 60 mM caused a progressive increase in the incorporation of L-[4-3H]phenylalanine into both all islet peptides and (pro)insulin. A preferential stimulation of proinsulin biosynthesis was only observed in islets incubated at 60 mM K+ in the presence of 4.0 mM D-glucose. In relative terms, the K+-induced increase in biosynthetic variables was less pronounced, however, than that otherwise evoked by a rise in D-glucose concentration from 2.5 to 4.0 mM to 5.6 or 16.7 mM. These findings may suggest that the effect of D-glucose to increase the K+ content of islet cells represents one modality for coupling a rise in D-glucose concentration to stimulation of proinsulin biosynthesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1385/ENDO:23:1:51 | DOI Listing |
BMJ Open Diabetes Res Care
January 2025
Diabetes and Endocrinology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
Introduction: The UK national pediatric diabetes audit reports higher HbA1c for children and young people (CYP) with type 1 diabetes (T1D) of Black ethnicity compared with White counterparts. This is presumably related to higher mean blood glucose (MBG) due to lower socioeconomic status (SES) and less access to technology. We aimed to determine if HbA1c ethnic disparity persists after accounting for the above variables.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
Objective: This study aims to identify whether the development of insulin resistance (IR) induced by high selenium (Se) is related to serine deficiency via the inhibition of the de novo serine synthesis pathway (SSP) by the administrations of 3-phosphoglycerate dehydrogenase (PHGDH) inhibitor (NCT503) or exogenous serine in mice.
Method: forty-eight male C57BL/6J mice were randomly divided into four groups: adequate-Se (0.1 mgSe/kg), high-Se (0.
Nutrients
January 2025
Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
Background: Prediabetes is a condition that often precedes the onset of type 2 diabetes mellitus (T2DM). Literature evidence indicates that prediabetes is reversible, making it an important therapeutic target for preventing the progression to T2DM. Several studies have investigated intermittent fasting as a possible method to manage or treat prediabetes.
View Article and Find Full Text PDFNutrients
January 2025
Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima City 960-1295, Fukushima, Japan.
(1) Background: It has been reported that people affected by COVID-19, an infectious disease caused by SARS-CoV-2, suffer from various diseases, after infection. One of the most serious problems is the increased risk of developing diabetes after COVID-19 infection. However, a treatment for post-COVID-19 infection diabetes has not yet been established.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.
Insulin receptor substrates (IRSs) are well-known mediators of the insulin and insulin-like growth factor (IGF)-I signaling pathways. We previously reported that the protein levels of IRS-2, a molecular species of IRS, were upregulated in the livers of rats fed a protein-restricted diet. This study aimed to elucidate the physiological role of IRS-2, whose level increases in response to protein restriction in cultured hepatocyte models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!