Characterization of the Kv channels of mouse carotid body chemoreceptor cells and their role in oxygen sensing.

J Physiol

Universidad de Valladolid y Consejo Superior de Investigaciones Cientificas (CSIC), Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Valladolid, Spain.

Published: June 2004

AI Article Synopsis

  • The study focuses on the expression and hypoxic sensitivity of oxygen-sensitive Kv channels in mouse carotid body (CB) chemoreceptor cells obtained from a transgenic mouse model.
  • Using green fluorescent protein (GFP) for identification, researchers confirmed the presence of chemoreceptor cells and demonstrated their ability to respond physiologically to low oxygen levels by showing increased intracellular calcium levels.
  • The findings suggest the presence of Kv2 and Kv3 channels, with detailed electrophysiological analysis indicating that Kv3 channels are primarily responsible for the O(2)-sensitive K(+) currents observed in these cells.

Article Abstract

As there are wide interspecies variations in the molecular nature of the O(2)-sensitive Kv channels in arterial chemoreceptors, we have characterized the expression of these channels and their hypoxic sensitivity in the mouse carotid body (CB). CB chemoreceptor cells were obtained from a transgenic mouse expressing green fluorescent protein (GFP) under the control of tyrosine hydroxylase (TH) promoter. Immunocytochemical identification of TH in CB cell cultures reveals a good match with GFP-positive cells. Furthermore, these cells show an increase in [Ca(2+)](i) in response to low P(O(2)), demonstrating their ability to engender a physiological response. Whole-cell experiments demonstrated slow-inactivating K(+) currents with activation threshold around -30 mV and a bi-exponential kinetic of deactivation (tau of 6.24 +/- 0.52 and 32.85 +/- 4.14 ms). TEA sensitivity of the currents identified also two different components (IC(50) of 17.8 +/- 2.8 and 940.0 +/- 14.7 microm). Current amplitude decreased reversibly in response to hypoxia, which selectively affected the fast deactivating component. Hypoxic inhibition was also abolished in the presence of low (10-50 microm) concentrations of TEA, suggesting that O(2) interacts with the component of the current most sensitive to TEA. The kinetic and pharmacological profile of the currents suggested the presence of Kv2 and Kv3 channels as their molecular correlates, and we have identified several members of these two subfamilies by single-cell PCR and immunocytochemistry. This report represents the first functional and molecular characterization of Kv channels in mouse CB chemoreceptor cells, and strongly suggests that O(2)-sensitive Kv channels in this preparation belong to the Kv3 subfamily.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665096PMC
http://dx.doi.org/10.1113/jphysiol.2004.062281DOI Listing

Publication Analysis

Top Keywords

chemoreceptor cells
12
characterization channels
8
channels mouse
8
mouse carotid
8
carotid body
8
body chemoreceptor
8
o2-sensitive channels
8
cells
5
channels
5
mouse
4

Similar Publications

Objective: With altered sense of taste being a common symptom of coronavirus disease 2019 (COVID-19), the main objective was to investigate the presence and distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) within the tongue over the course of infection.

Methods: Golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 and tongues were collected at 2, 3, 5, 8, 17, 21, 35, and 42 days post-infection (dpi) for analysis. In order to test for gross changes in the tongue, the papillae of the tongue were counted.

View Article and Find Full Text PDF

Habitual consumption of low-calorie sweeteners (LCS) during juvenile-adolescence can lead to greater sugar intake later in life. Here, we investigated if exposure to the LCS Acesulfame Potassium (Ace-K) during this critical period of development reprograms the taste system in a way that would alter hedonic responding for common dietary compounds. Results revealed that early-life LCS intake not only enhanced the avidity for a caloric sugar (fructose) when rats were in a state of caloric need, it increased acceptance of a bitterant (quinine) in Ace-K-exposed rats tested when middle-aged.

View Article and Find Full Text PDF

Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.

View Article and Find Full Text PDF

Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.

View Article and Find Full Text PDF

Hypoxia inducible factor-dependent upregulation of Agrp in glomus type I cells of the carotid body.

Mol Metab

January 2025

Center for Hypothalamic Research and Department of Internal medicine, UT Southwestern Medical Center, Dallas, TX, USA. Electronic address:

Agouti-related peptide (AgRP) is a well-established potent orexigenic peptide primarily expressed in hypothalamic neurons. Nevertheless, the expression and functional significance of extrahypothalamic AgRP remain poorly understood. In this study, utilizing histological and molecular biology techniques, we have identified a significant expression of Agrp mRNA and AgRP peptide production in glomus type I cells within the mouse carotid body (CB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!